Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Dodds, Mike Haas, Andreas Kirsch, Christoph M. |
| Abstract | Concurrent data-structures, such as stacks, queues, and deques, often implicitly enforce a total order over elements in their underlying memory layout. However, much of this order is unnecessary: linearizability only requires that elements are ordered if the insert methods ran in sequence. We propose a new approach which uses timestamping to avoid unnecessary ordering. Pairs of elements can be left unordered if their associated insert operations ran concurrently, and order imposed as necessary at the eventual removal. We realise our approach in a new non-blocking data-structure, the TS (timestamped) stack. Using the same approach, we can define corresponding queue and deque data-structures. In experiments on x86, the TS stack outperforms and outscales all its competitors -- for example, it outperforms the elimination-backoff stack by factor of two. In our approach, more concurrency translates into less ordering, giving less-contended removal and thus higher performance and scalability. Despite this, the TS stack is linearizable with respect to stack semantics. The weak internal ordering in the TS stack presents a challenge when establishing linearizability: standard techniques such as linearization points work well when there exists a total internal order. We present a new stack theorem, mechanised in Isabelle, which characterises the orderings sufficient to establish stack semantics. By applying our stack theorem, we show that the TS stack is indeed linearizable. Our theorem constitutes a new, generic proof technique for concurrent stacks, and it paves the way for future weakly ordered data-structure designs. |
| Starting Page | 233 |
| Ending Page | 246 |
| Page Count | 14 |
| File Format | MPEG PDF |
| ISBN | 9781450333009 |
| DOI | 10.1145/2676726.2676963 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2015-01-14 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Timestamps Concurrent stack Linearizability Verification |
| Content Type | Text Video |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|