Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Chopard, Bastien Meyer, Xavier Salamin, Nicolas |
| Abstract | An increasing number of scientific domains are confronted with the arduous task of managing large scale applications. For such applications, gradient estimations come at a large computational cost. Despite notable advances in automatic differentiation during the last years, its use in this context may reveal too costly in memory, inadequate for parallel architecture or require expert knowledge. For these reasons, we investigate an alternative approach that uses the finite difference method to evaluate the gradient of functions modeled as a directed acyclic graph. This approach enables the reuse of partial results from previous partial derivatives evaluations and thus reduces the computational cost. We identify a discrete optimization problem arising in the limited-memory context of large scale applications that aims to maximize the computational efficiency of the gradient approximation by scheduling the partial derivatives. This optimization problem is extended to consider the partitioning of the computations on multiple processors. We further derive some properties of these optimization problems, such as their upper bound on performance gains. Following a brief description of algorithms designed to obtain sensible solutions for both problems, we study the increase in performance resulting from sequential and parallel schedules obtained for synthetic DAGs. Finally, we employ this approach to accelerate the gradient evaluation of DAGs representing real evolutionary biology models. For one of these large scale applications, our approach is shown to be nearly 400 times faster than a state-of-the-art software in sequential, and more than 11,000 times faster when using 256 processors. |
| Starting Page | 1 |
| Ending Page | 12 |
| Page Count | 12 |
| File Format | |
| ISBN | 9781450350624 |
| DOI | 10.1145/3093172.3093231 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2017-06-26 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|