Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Morse, Gregory Stanley, Kenneth O. |
| Abstract | While evolutionary algorithms (EAs) have long offered an alternative approach to optimization, in recent years backpropagation through stochastic gradient descent (SGD) has come to dominate the fields of neural network optimization and deep learning. One hypothesis for the absence of EAs in deep learning is that modern neural networks have become so high dimensional that evolution with its inexact gradient cannot match the exact gradient calculations of backpropagation. Furthermore, the evaluation of a single individual in evolution on the big data sets now prevalent in deep learning would present a prohibitive obstacle towards efficient optimization. This paper challenges these views, suggesting that EAs can be made to run significantly faster than previously thought by evaluating individuals only on a small number of training examples per generation. Surprisingly, using this approach with only a simple EA (called the limited evaluation EA or LEEA) is competitive with the performance of the state-of-the-art SGD variant RMSProp on several benchmarks with neural networks with over 1,000 weights. More investigation is warranted, but these initial results suggest the possibility that EAs could be the first viable training alternative for deep learning outside of SGD, thereby opening up deep learning to all the tools of evolutionary computation. |
| Starting Page | 477 |
| Ending Page | 484 |
| Page Count | 8 |
| File Format | |
| ISBN | 9781450342063 |
| DOI | 10.1145/2908812.2908916 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-07-20 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Deep learning Neural networks Machine learning Pattern recognition and classification Artificial intelligence |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|