WebSite Logo
  • Content
  • Similar Resources
  • Metadata
  • Cite This
  • Log-in
  • Fullscreen
Log-in
Do not have an account? Register Now
Forgot your password? Account recovery
  1. Proceedings of the 4th international workshop on Multi-relational mining (MRDM '05)
  2. Leveraging relational autocorrelation with latent group models
Loading...

Please wait, while we are loading the content...

Kernel methods for graphs
Relational clustering for multi-type entity resolution
Learning Bayesian networks of rules with SAYU
Mining relational databases with multi-view learning
Qualitative comparison of graph-based and logic-based multi-relational data mining: a case study
Bias-free hypothesis evaluation in multirelational domains
An efficient multi-relational Naïve Bayesian classifier based on semantic relationship graph
Leveraging relational autocorrelation with latent group models
Hyperpaths: extending pathfinding to moded languages
Further results of probabilistic first-order revision of theories from examples
Gene classification: issues and challenges for relational learning
The case for anomalous link detection

Similar Documents

...
Leveraging relational autocorrelation with latent group models

Article

...
ABSTRACT Leveraging Relational Autocorrelation with Latent Group Models

...
Leveraging relational autocorrelation with latent group models

Article

...
Leveraging relational autocorrelation with latent group models (2005)

Conference Proceedings

...
Leveraging relational autocorrelation with latent group models (2005)

Article

...
Leveraging the schema in latent factor models for knowledge graph completion

Article

...
A Shrinkage Approach for Modeling Non-stationary Relational Autocorrelation

Article

...
Learning directed relational models with recursive dependencies

Article

...
Latent Structure Models for Social Networks using Aggregated Relational Data

Leveraging relational autocorrelation with latent group models

Content Provider ACM Digital Library
Author Jensen, David Neville, Jennifer
Abstract The presence of autocorrelation provides strong motivation for using relational techniques for learning and inference. Autocorrelation is a statistical dependency between the values of the same variable on related entities and is a nearly ubiquitous characteristic of relational data sets. Recent research has explored the use of collective inference techniques to exploit this phenomenon. These techniques achieve significant performance gains by modeling observed correlations among class labels of related instances, but the models fail to capture a frequent cause of autocorrelation---the presence of underlying groups that influence the attributes on a set of entities. We propose a latent group model (LGM) for relational data, which discovers and exploits the hidden structures responsible for the observed autocorrelation among class labels. Modeling the latent group structure improves model performance, increases inference efficiency, and enhances our understanding of the datasets. We evaluate performance on three relational classification tasks and show that LGM outperforms models that ignore latent group structure, particularly when there is little information with which to seed inference.
Starting Page 49
Ending Page 55
Page Count 7
File Format PDF
ISBN 1595932127
DOI 10.1145/1090193.1090201
Language English
Publisher Association for Computing Machinery (ACM)
Publisher Date 2005-08-21
Publisher Place New York
Access Restriction Subscribed
Content Type Text
Resource Type Article
  • About
  • Disclaimer
  • Feedback
  • Sponsor
  • Contact
  • Chat with Us
About National Digital Library of India (NDLI)
NDLI logo

National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.

Learn more about this project from here.

Disclaimer

NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.

Feedback

Sponsor

Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.

Contact National Digital Library of India
Central Library (ISO-9001:2015 Certified)
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India | PIN - 721302
See location in the Map
03222 282435
Mail: support@ndl.gov.in
Sl. Authority Responsibilities Communication Details
1 Ministry of Education (GoI),
Department of Higher Education
Sanctioning Authority https://www.education.gov.in/ict-initiatives
2 Indian Institute of Technology Kharagpur Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project https://www.iitkgp.ac.in
3 National Digital Library of India Office, Indian Institute of Technology Kharagpur The administrative and infrastructural headquarters of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
4 Project PI / Joint PI Principal Investigator and Joint Principal Investigators of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
Prof. Saswat Chakrabarti  will be added soon
5 Website/Portal (Helpdesk) Queries regarding NDLI and its services support@ndl.gov.in
6 Contents and Copyright Issues Queries related to content curation and copyright issues content@ndl.gov.in
7 National Digital Library of India Club (NDLI Club) Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach clubsupport@ndl.gov.in
8 Digital Preservation Centre (DPC) Assistance with digitizing and archiving copyright-free printed books dpc@ndl.gov.in
9 IDR Setup or Support Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops idr@ndl.gov.in
I will try my best to help you...
Cite this Content
Loading...