Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Vechev, Martin Raychev, Veselin Bielik, Pavol Krause, Andreas |
| Abstract | We present a new approach for learning programs from noisy datasets. Our approach is based on two new concepts: a regularized program generator which produces a candidate program based on a small sample of the entire dataset while avoiding overfitting, and a dataset sampler which carefully samples the dataset by leveraging the candidate program's score on that dataset. The two components are connected in a continuous feedback-directed loop. We show how to apply this approach to two settings: one where the dataset has a bound on the noise, and another without a noise bound. The second setting leads to a new way of performing approximate empirical risk minimization on hypotheses classes formed by a discrete search space. We then present two new kinds of program synthesizers which target the two noise settings. First, we introduce a novel regularized bitstream synthesizer that successfully generates programs even in the presence of incorrect examples. We show that the synthesizer can detect errors in the examples while combating overfitting -- a major problem in existing synthesis techniques. We also show how the approach can be used in a setting where the dataset grows dynamically via new examples (e.g., provided by a human). Second, we present a novel technique for constructing statistical code completion systems. These are systems trained on massive datasets of open source programs, also known as ``Big Code''. The key idea is to introduce a domain specific language (DSL) over trees and to learn functions in that DSL directly from the dataset. These learned functions then condition the predictions made by the system. This is a flexible and powerful technique which generalizes several existing works as we no longer need to decide a priori on what the prediction should be conditioned (another benefit is that the learned functions are a natural mechanism for explaining the prediction). As a result, our code completion system surpasses the prediction capabilities of existing, hard-wired systems. . |
| Starting Page | 761 |
| Ending Page | 774 |
| Page Count | 14 |
| File Format | |
| ISBN | 9781450335492 |
| DOI | 10.1145/2837614.2837671 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-01-11 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Statistical code completion Noisy data Big code Program synthesis Regularization Anomaly detection |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|