Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Cohen, Edith |
| Abstract | Graph datasets with billions of edges, such as social and Web graphs, are prevalent. To be feasible, computation on such large graphs should scale linearly with graph size. All-distances sketches (ADSs) are emerging as a powerful tool for scalable computation of some basic properties of individual nodes or the whole graph. ADSs were first proposed two decades ago (Cohen 1994) and more recent algorithms include ANF (Palmer, Gibbons, and Faloutsos 2002) and hyperANF (Boldi, Rosa, and Vigna 2011). A sketch of logarithmic size is computed for each node in the graph and the computation in total requires only a near linear number of edge relaxations. From the ADS of a node, we can estimate neighborhood cardinalities (the number of nodes within some query distance) and closeness centrality. More generally we can estimate the distance distribution, effective diameter, similarities, and other parameters of the full graph. We make several contributions which facilitate a more effective use of ADSs for scalable analysis of massive graphs. We provide, for the first time, a unified exposition of ADS algorithms and applications. We present the Historic Inverse Probability (HIP) estimators which are applied to the ADS of a node to estimate a large natural class of queries including neighborhood cardinalities and closeness centralities. We show that our HIP estimators have at most half the variance of previous neighborhood cardinality estimators and that this is essentially optimal. Moreover, HIP obtains a polynomial improvement over state of the art for more general domain queries and the estimators are simple, flexible, unbiased, and elegant. The ADS generalizes Min-Hash sketches, used for approximating cardinality (distinct count) on data streams. We obtain lower bounds on Min-Hash cardinality estimation using classic estimation theory. We illustrate the power of HIP, both in terms of ease of application and estimation quality, by comparing it to the HyperLogLog algorithm (Flajolet et al. 2007), demonstrating a significant improvement over this state-of-the-art practical algorithm. We also study the quality of ADS estimation of distance ranges, generalizing the near-linear time factor-2 approximation of the diameter. |
| Starting Page | 88 |
| Ending Page | 99 |
| Page Count | 12 |
| File Format | |
| ISBN | 9781450323758 |
| DOI | 10.1145/2594538.2594546 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2014-06-18 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Approximate distinct counters Estimation Closeness centrality Min-hash sketch All-distances sketch |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|