Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Haussler, David |
| Abstract | With our ability to sequence entire genomes, we have for the first time the opportunity to compare the genomes of present day species, and deduce the trajectories by which they diversified from a common ancestral genome. For example, starting with a small shrew-like ancestor in the Cretaceous period about 100 million years ago, the different species of placental mammals radiated outward, creating a stunning diversity of forms from whales to armadillos to humans. From the genomes of present-day species, it is possible to computationally reconstruct what most of the DNA bases in the genome of the common ancestor of placental mammals must have looked like, and deduce most of the changes that lead to humans. In so doing, we discover how Darwinian evolution has shaped us at the molecular level. Because most random mutations to functionally important regions of DNA reduce fitness, these changes usually disappear over time, in a process known as negative selection. From its unusually high conservation between species, it is immediately evident that at least 5% of the human genome has been under negative selection during most of mammalian evolution, and is hence likely to be functionally important. Protein-coding genes and structural RNA genes stand out among the negatively selected regions because of their distinctive pattern of restricted DNA base substitutions, insertions and deletions. However, most of the DNA under negative selection in mammalian genomes, and indeed in vertebrate genomes in general, does not appear to be part of protein-coding or structural RNA genes, and shares no sequence similarity with any DNA in the genomes of invertebrates. Experimental evidence suggests that many of these unclassified vertebrate-conserved DNA elements serve to regulate genes involved in embryonic development. A significant amount of this material appears to have been put into place by the movement of transposons, mobile DNA elements that are derived from ancient viruses, the remnants of which constitute at least half of our genome. This provides new evidence for older theories of McClintock and later Britten and Davidson that mobile DNA elements played a significant role in the evolution of plant and animal gene regulatory networks. Overlaid on the background of negative selection, we occasionally see a short segment of DNA that has changed rapidly in a particular lineage, suggesting possible positive selection for a modified function in that lineage. The most dramatic example of this in the last 5 million years of human evolution occurs in a previously unstudied RNA gene expressed in the developing cerebral cortex, known as Human Accelerated Region 1 (HAR1). This gene is turned on only in a select set of neurons, during the time in fetal development when these neurons orchestrate the formation of the substantially larger cortex of the human brain. It will be many years before the biology of such examples is fully understood, but right now we relish the opportunity to get a first peek at the molecular tinkering that transmuted our animal ancestors into humans. |
| Starting Page | 639 |
| Ending Page | 640 |
| Page Count | 2 |
| File Format | |
| ISBN | 9781605580470 |
| DOI | 10.1145/1374376.1374468 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2008-05-17 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Transposons Selection Mammalian evolution Genomes |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|