Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Kim, Yong-Deok Choi, Seungjin |
| Abstract | Collaborative prediction involves filling in missing entries of a user-item matrix to predict preferences of users based on their observed preferences. Most of existing models assume that the data is missing at random (MAR), which is often violated in recommender systems in practice. Incorrect assumption on missing data ignores the missing data mechanism, leading to biased inferences and prediction. In this paper we present a Bayesian binomial mixture model for collaborative prediction, where the generative process for data and missing data mechanism are jointly modeled to handle non-random missing data. Missing data mechanism is modeled by three factors, each of which is related to users, items, and rating values. Each factor is modeled by Bernoulli random variable, and the observation of rating value is determined by the Boolean OR operation of three binary variables. We develop computationally-efficient variational inference algorithms, where variational parameters have closed-form update rules and the computational complexity depends on the number of observed ratings, instead of the size of the rating data matrix. We also discuss implementation issues on hyperparameter tuning and estimation based on empirical Bayes. Experiments on Yahoo! Music and MovieLens datasets confirm the useful behavior of our model by demonstrating that: (1) it outperforms state-of-the-art methods in yielding higher predictive performance; (2) it finds meaningful solutions instead of undesirable boundary solutions; (3) it provides rating trend analysis on why ratings are observed. |
| Starting Page | 201 |
| Ending Page | 208 |
| Page Count | 8 |
| File Format | PDF MP4 |
| ISBN | 9781450326681 |
| DOI | 10.1145/2645710.2645754 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2014-10-06 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Non-random missing data Collaborative filtering Probabilistic models Variational bayesian inference Recommender systems |
| Content Type | Audio Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|