Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Nagappan, Meiyappan Bettenburg, Nicolas Hassan, Ahmed E. |
| Abstract | Much research energy in software engineering is focused on the creation of effort and defect prediction models. Such models are important means for practitioners to judge their current project situation, optimize the allocation of their resources, and make informed future decisions. However, software engineering data contains a large amount of variability. Recent research demonstrates that such variability leads to poor fits of machine learning models to the underlying data, and suggests splitting datasets into more fine-grained subsets with similar properties. In this paper, we present a comparison of three different approaches for creating statistical regression models to model and predict software defects and development effort. Global models are trained on the whole dataset. In contrast, local models are trained on subsets of the dataset. Last, we build a global model that takes into account local characteristics of the data. We evaluate the performance of these three approaches in a case study on two defect and two effort datasets. We find that for both types of data, local models show a significantly increased fit to the data compared to global models. The substantial improvements in both relative and absolute prediction errors demonstrate that this increased goodness of fit is valuable in practice. Finally, our experiments suggest that trends obtained from global models are too general for practical recommendations. At the same time, local models provide a multitude of trends which are only valid for specific subsets of the data. Instead, we advocate the use of trends obtained from global models that take into account local characteristics, as they combine the best of both worlds. |
| Starting Page | 60 |
| Ending Page | 69 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781467317610 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2012-06-02 |
| Access Restriction | Subscribed |
| Subject Keyword | Software metrics Techniques Models |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|