Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Malagò, Luigi Matteucci, Matteo Pistone, Giovanni |
| Abstract | In this paper we present a geometrical framework for the analysis of Estimation of Distribution Algorithms (EDAs) based on the exponential family. From a theoretical point of view, an EDA can be modeled as a sequence of densities in a statistical model that converges towards distributions with reduced support. Under this framework, at each iteration the empirical mean of the fitness function decreases in probability, until convergence of the population. This is the context of stochastic relaxation, i.e., the idea of looking for the minima of a function by minimizing its expected value over a set of probability densities. Our main interest is in the study of the gradient of the expected value of the function to be minimized, and in particular on how its landscape changes according to the fitness function and the statistical model used in the relaxation. After introducing some properties of the exponential family, such as the description of its topological closure and of its tangent space, we provide a characterization of the stationary points of the relaxed problem, together with a study of the minimizing sequences with reduced support. The analysis developed in the paper aims to provide a theoretical understanding of the behavior of EDAs, and in particular their ability to converge to the global minimum of the fitness function. The theoretical results of this paper, beside providing a formal framework for the analysis of EDAs, lead to the definition of a new class algorithms for binary functions optimization based on Stochastic Natural Gradient Descent (SNGD), where the estimation of the parameters of the distribution is replaced by the direct update of the model parameters by estimating the natural gradient of the expected value of the fitness function. |
| Starting Page | 230 |
| Ending Page | 242 |
| Page Count | 13 |
| File Format | |
| ISBN | 9781450306331 |
| DOI | 10.1145/1967654.1967675 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2011-01-05 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Stochastic relaxation Estimation of distribution algorithms Exponential family Stochastic natural gradient descent |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|