Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Sadeghian Sadeghabad, Sina Ehsani, Shayan Fazli, MohammadAmin Mehrabian, Abbas Saghafian, Morteza Safari, MohammadAli ShokatFadaee, Saber |
| Abstract | We consider a network creation game in which, each player (vertex) has a limited budget to establish links to other players. In our model, each link has a unit cost and each agent tries to minimize its cost which is its local diameter or its total distance to other players in the (undirected) underlying graph of the created network. Two variants of the game are studied: in the MAX version, the cost incurred to a vertex is the maximum distance between that vertex and other vertices, and in the SUM version, the cost incurred to a vertex is the sum of distances between that vertex and other vertices. We prove that in both versions pure Nash equilibria exist, but the problem of finding the best response of a vertex is NP-hard. Next, we study the maximum possible diameter of an equilibrium graph with n vertices in various cases. For infinite numbers of n, we construct an equilibrium tree with diameter Θ(n) in the MAX version. Also, we prove that the diameter of any equilibrium tree is O(log n) in the SUM version and this bound is tight. When all vertices have unit budgets (i.e.~can establish link to just one vertex), the diameter in both versions is O(1). We give an example of equilibrium graph in MAX version, such that all vertices have positive budgets and yet the diameter is as large as Ω(√log n). This interesting result shows that the diameter does not decrease necessarily and may increase as the budgets are increased. For the SUM version, we prove that every equilibrium graph has diameter 2O(√log n) when all vertices have positive budgets. Moreover, if the budget of every players is at least k, then every equilibrium graph with diameter more than 3 is k-connected. |
| Starting Page | 207 |
| Ending Page | 214 |
| Page Count | 8 |
| File Format | |
| ISBN | 9781450307437 |
| DOI | 10.1145/1989493.1989523 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2011-06-04 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Network design Nash equilibrium Game theory |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|