NDLI logo
  • Content
  • Similar Resources
  • Metadata
  • Cite This
  • Log-in
  • Fullscreen
Log-in
Do not have an account? Register Now
Forgot your password? Account recovery
  1. Proceedings of the 6th ACM SIGPLAN/SIGOPS international conference on Virtual execution environments (VEE '10)
  2. AASH: an asymmetry-aware scheduler for hypervisors
Loading...

Please wait, while we are loading the content...

Capability wrangling made easy: debugging on a microkernel with valgrind
Improving compiler-runtime separation with XIR
Neon: system support for derived data management
AASH: an asymmetry-aware scheduler for hypervisors
Efficient runtime tracking of allocation sites in Java
DBT path selection for holistic memory efficiency and performance
Transistors to toys: teaching systems to freshmen
Multi-stage replay with crosscut
VMKit: a substrate for managed runtime environments
Energy-efficient storage in virtual machine environments
Supporting soft real-time tasks in the xen hypervisor
Evaluation of a just-in-time compiler retrofitted for PHP
Dynamic binary translation specialized for embedded systems
Looking beyond a singularity
Optimizing crash dump in virtualized environments
Novel online profiling for virtual machines

Similar Documents

...
AASH:an asymmetry-aware scheduler for hypervisors

Article

...
AASH: An Asymmetry-Aware Scheduler for Hypervisors (2010)

Article

...
An energy-efficient hypervisor scheduler for asymmetric multi-core

Article

...
Efficient Virtual Machine Scheduling-policy for Virtualized Heterogeneous Multicore Systems

...
Security-Aware Real-Time Scheduling for Hypervisors

Article

...
Contention-Aware Scheduling for Asymmetric Multicore Processors

Article

...
DACS: dynamic allocation credit scheduler for virtual machines

Article

...
Fair-Share Scheduling for Performance-Asymmetric Multicore Architecture via Scaled Virtual Runtime

Article

...
Task-Based Boost Mechanism in Credit Scheduler

Article

AASH: an asymmetry-aware scheduler for hypervisors

Content Provider ACM Digital Library
Author Kamali, Ali Kazempour, Vahid Fedorova, Alexandra
Abstract Asymmetric multicore processors (AMP) consist of cores exposing the same instruction-set architecture (ISA) but varying in size, frequency, power consumption and performance. AMPs were shown to be more power efficient than conventional symmetric multicore processors, and it is therefore likely that future multicore systems will include cores of different types. AMPs derive their efficiency from core specialization: instruction streams can be assigned to run on the cores best suited to their demands for architectural resources. System efficiency is improved as a result. To perform effective matching of threads to cores, the thread scheduler must be asymmetry-aware; and while asymmetry-aware schedulers for operating systems are a well studied topic, asymmetry-awareness in hypervisors has not been addressed. A hypervisor must be asymmetry-aware to enable proper functioning of asymmetry-aware guest operating systems; otherwise they will be ineffective in virtual environments. Furthermore, a hypervisor must ensure that asymmetric cores are shared among multiple guests in a fair fashion or in accordance with their priorities. This work for the first time implements simple changes to the hypervisor scheduler, required to make it asymmetry-aware, and evaluates the benefits and overheads of these asymmetry-aware mechanisms. Our evaluation was performed using an open source hypervisor Xen on a real multicore system where asymmetry was emulated via CPU frequency scaling. We compared the asymmetry-aware hypervisor to default Xen. Our results indicate that asymmetry support can be implemented with low overheads, and resulting performance improvements can be significant, reaching up to 36% in our experiments. Most performance improvements are derived from the fact that an asymmetry-aware hypervisor ensures that the fast cores do not go idle before slow cores and from the fact that it maps virtual cores to physical cores for asymmetry-aware guests according to the guest's expectations. Other benefits from asymmetry awareness are fairer sharing of computing resources among VMs and more stable execution times.
Starting Page 85
Ending Page 96
Page Count 12
File Format PDF
ISBN 9781605589107
DOI 10.1145/1735997.1736011
Language English
Publisher Association for Computing Machinery (ACM)
Publisher Date 2010-03-17
Publisher Place New York
Access Restriction Subscribed
Subject Keyword Multicore processors Heterogeneous Virtual machine monitor Scheduling algorithms Hypervisor Asymmetric
Content Type Text
Resource Type Article
  • About
  • Disclaimer
  • Feedback
  • Sponsor
  • Contact
  • Chat with Us
About National Digital Library of India (NDLI)
NDLI logo

National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.

Learn more about this project from here.

Disclaimer

NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.

Feedback

Sponsor

Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.

Contact National Digital Library of India
Central Library (ISO-9001:2015 Certified)
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India | PIN - 721302
See location in the Map
03222 282435
Mail: support@ndl.gov.in
Sl. Authority Responsibilities Communication Details
1 Ministry of Education (GoI),
Department of Higher Education
Sanctioning Authority https://www.education.gov.in/ict-initiatives
2 Indian Institute of Technology Kharagpur Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project https://www.iitkgp.ac.in
3 National Digital Library of India Office, Indian Institute of Technology Kharagpur The administrative and infrastructural headquarters of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
4 Project PI / Joint PI Principal Investigator and Joint Principal Investigators of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
Prof. Saswat Chakrabarti  will be added soon
5 Website/Portal (Helpdesk) Queries regarding NDLI and its services support@ndl.gov.in
6 Contents and Copyright Issues Queries related to content curation and copyright issues content@ndl.gov.in
7 National Digital Library of India Club (NDLI Club) Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach clubsupport@ndl.gov.in
8 Digital Preservation Centre (DPC) Assistance with digitizing and archiving copyright-free printed books dpc@ndl.gov.in
9 IDR Setup or Support Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops idr@ndl.gov.in
I will try my best to help you...
Cite this Content
Loading...