Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Tong, Hanghang Eliassi-Rad, Tina Gallagher, Brian Faloutsos, Christos |
| Abstract | We address the problem of classification in partially labeled networks (a.k.a. within-network classification) where observed class labels are sparse. Techniques for statistical relational learning have been shown to perform well on network classification tasks by exploiting dependencies between class labels of neighboring nodes. However, relational classifiers can fail when unlabeled nodes have too few labeled neighbors to support learning (during training phase) and/or inference (during testing phase). This situation arises in real-world problems when observed labels are sparse. In this paper, we propose a novel approach to within-network classification that combines aspects of statistical relational learning and semi-supervised learning to improve classification performance in sparse networks. Our approach works by adding "ghost edges" to a network, which enable the flow of information from labeled to unlabeled nodes. Through experiments on real-world data sets, we demonstrate that our approach performs well across a range of conditions where existing approaches, such as collective classification and semi-supervised learning, fail. On all tasks, our approach improves area under the ROC curve (AUC) by up to 15 points over existing approaches. Furthermore, we demonstrate that our approach runs in time proportional to L • E, where L is the number of labeled nodes and E is the number of edges. |
| Starting Page | 256 |
| Ending Page | 264 |
| Page Count | 9 |
| File Format | PDF QT / MOV |
| ISBN | 9781605581934 |
| DOI | 10.1145/1401890.1401925 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2008-08-24 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Statistical relational learning Semi-supervised learning Random walk Collective classification |
| Content Type | Video Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|