Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | McCallum, Scott Brown, Christopher W. |
| Abstract | This paper introduces an improved method for constructing cylindrical algebraic decompositions (CADs) for formulas with two polynomial equations as implied constraints. The fundamental idea is that neither of the varieties of the two polynomials is actually represented by the CAD the method produces, only the variety defined by their common zeros is represented. This allows for a substantially smaller projection factor set, and for a CAD with many fewer cells.In the current theory of CADs, the fundamental object is to decompose n-space into regions in which a polynomial equation is either identically true or identically false. With many polynomials, one seeks a decomposition into regions in which each polynomial equation is identically true or false independently. The results presented here are intended to be the first step in establishing a theory of CADs in which systems of equations are fundamental objects, so that given a system we seek a decomposition into regions in which the system is identically true or false --- which means each equation is no longer considered independently. Quantifier elimination problems of this form (systems of equations with side conditions) are quite common, and this approach has the potential to bring large problems of this type into the scope of what can be solved in practice. The special case of formulas containing two polynomial equations as constraints is an important one, but this work is also intended to be extended in the future to the more general case. |
| Starting Page | 76 |
| Ending Page | 83 |
| Page Count | 8 |
| File Format | |
| ISBN | 1595930957 |
| DOI | 10.1145/1073884.1073897 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2005-07-24 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Cad Polynomial systems |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|