Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Stachowiak, Grzegorz De Marco, Gianluca |
| Abstract | In this work we address the question whether a simple shared channel could be efficiently utilized, that is, with a constant throughput and linear packet latency. A shared channel (also called a multiple access channel), introduced nearly 50 years ago in the context of the Ethernet [36], is among the most popular and widely studied models of communication and distributed computing. In a nutshell, a number of stations is able to communicate by transmitting and listening to a shared channel, and a message is successfully delivered to all stations if and only if its source station is the only transmitter at a time. Despite of a vast amount of work in the last decades, many fundamental questions remain open, such as: What is the impact of asynchrony on channel utilization? How important is the knowledge/estimate of the number of contenders? Could non-adaptive protocols (i.e., random codes) be asymptotically as efficient as adaptive protocols? In this work we present a broad picture of results answering the above mentioned questions for a fundamental problem of contention resolution, in which each of the contending stations needs to broadcast successfully its message. We show that adaptive algorithms or algorithms with the knowledge of contention size k (i.e., random codes with knowledge of k) achieve constant channel throughput and linear message latency even for very weak channels, i.e., with feedback restricted to simple acknowledgments and in the absence of synchronization. This asymptotically optimal performance cannot be extended to other settings --- we prove that there is no non-adaptive algorithm without the knowledge of contention size k achieving throughput \omega((\log\log k)^2/(\log k)) and/or admitting latency o(k\log k/(\log\log k)^2). This means, in particular, that coding (even random) with acknowledgments is not very efficient on a shared channel without synchronization or estimate of contention size. We also present a non-adaptive algorithm with no knowledge of contention size that almost matches these two complexities. More specifically, it achieves latency O(k\log^2 k) and channel utilization \Omega(1/\log^2 k) even if stations do not switch off after successful transmissions (and thus, could disturb other stations in succeeding), and could be improved by factor \Theta(\log\log k) if stations switch off after acknowledgment. Despite the absense of a collision detection mechanism, our algorithms are also efficient in terms of energy. The maximum number of channel accesses (including transmissions and listenings) for our non-adaptive solutions, with and without knowledge of k, is respectively O(\log k) and O(\log^2 k) whp. Regarding the adaptive algorithm, we argue that a simple modification of our protocol preserves constant throughput and linear latency while achieving O(\log k) maximum number of channel accesses per station whp. |
| Starting Page | 391 |
| Ending Page | 400 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450349925 |
| DOI | 10.1145/3087801.3087831 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2017-07-25 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Lower bound Multiple-access channel Shared channel Randomized algorithms Contention resolution Distributed algorithms |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|