Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Gribble, Steven D. Kohno, Tadayoshi Richardson, David W. |
| Abstract | Remote operating system fingerprinting relies on implementation differences between OSs to identify the specific variant executing on a remote host. Because these differences can be subtle and difficult to find, most fingerprinting tools require expert manual effort to construct discriminative fingerprints and classification models. In prior work, Caballero et al. proposed a promising technique to eliminate manual intervention: the automatic generation of fingerprints using an approach similar to fuzz testing [6]. Their work evaluated the technique in a small-scale, carefully controlled test environment. In this paper, we re-examine automatic OS fingerprinting in a more challenging large-scale scenario to better understand the viability of the technique. In contrast to the prior work, we find that automatic fingerprint generation suffers from several limitations and technical hurdles that can limit its effectiveness, particularly in more demanding, realistic environments. We use machine learning algorithms from the well-known Weka [11] data mining toolkit to automatically generate fingerprints over 329 different machine instances, and we compare the accuracy of our automatically generated fingerprints to Nmap. Our results suggest that overfitting to non-OS-specific behavioral differences, the indistinguishability of different OS variants, the biasing of an automatic tool to the makeup of the training data, and the lack of ability of an automatic tool to exploit protocol and software semantics significantly limit the usefulness of this technique in practice. Automatic techniques can help identify candidate signatures, but our results suggest that manual expertise will remain an integral part of fingerprint generation. |
| Starting Page | 24 |
| Ending Page | 34 |
| Page Count | 11 |
| File Format | |
| ISBN | 9781450300889 |
| DOI | 10.1145/1866423.1866430 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2010-10-08 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Fingerprinting Active learning Automatic fingerprint generation Classification Machine learning Fuzz testing |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|