Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Galan, Severino F. Mengshoel, Ole J. |
| Abstract | Crowding is a technique used in genetic algorithms to preserve diversity in the population and to prevent premature convergence to local optima. It consists of pairing each offspring with a similar individual in the current population (pairing phase) and deciding which of the two will remain in the population (replacement phase). The present work focuses on the replacement phase of crowding, which usually has been carried out by one of the following three approaches: Deterministic, Probabilistic, and Simulated Annealing. These approaches present some limitations regarding the way replacement is conducted. On the one hand, the first two apply the same selective pressure regardless of the problem being solved or the stage of the genetic algorithm. On the other hand, the third does not apply a uniform selective pressure over all the individuals in the population, which makes the control of selective pressure over the generations somewhat difficult. This work presents a Generalized Crowding approach that allows selective pressure to be controlled in a simple way in the replacement phase of crowding, thus overcoming limitations of the other approaches. Furthermore, the understanding of existing approaches is greatly improved, since both Deterministic and Probabilistic Crowding turn out to be special cases of Generalized Crowding. In addition, the temperature parameter used in Simulated Annealing is replaced by a parameter called scaling factor that controls the selective pressure applied. Theoretical analysis using Markov chains and empirical evaluation using Bayesian networks demonstrate the potential of this novel Generalized Crowding approach. |
| Starting Page | 775 |
| Ending Page | 782 |
| Page Count | 8 |
| File Format | |
| ISBN | 9781450300728 |
| DOI | 10.1145/1830483.1830620 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2010-07-07 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Markov chain analysis Deterministic crowding Niching Bayesian networks Experiments Probabilistic crowding Genetic algorithms |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|