Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Malliaros, Fragkiskos D. Zacharaki, Evangelia I. Charisi, Amalia Megalooikonomou, Vasileios |
| Abstract | Time series constitute a prevalent data type that arise in several diverse disciplines (e.g., biomedical data, sensor data, images, video data), and therefore analyzing time series is a significant task with a plethora of important applications. In this paper, we study the general problem of similarity search in time series databases and we propose a novel multiresolution indexing (i.e., representation) and retrieval method for time series similarity search. Our approach is motivated by the idea that if we examine a time series at different resolution levels, we could possibly acquire further insights about the data. The proposed algorithm adopts a combined, two-step pruning (filtering) strategy to further reduce data dimensionality by discarding irrelevant time series (i.e., false alarms). At a first level, the time series are represented by line segments and filtered by the triangular inequality property. Then, a Vector Quantization like scheme is applied to encode data and thus to reduce dimensionality. We test and demonstrate the performance of the proposed method, analyzing EEG time series data for retrieval of one of the constituent brain waveforms in EEG recordings, the K-complex, but the method can as well be applied for retrieval of other patterns of interest in time series analysis. The automatic detection and categorization of the EEG patterns will allow the advanced correlation analysis of large amounts of data and will lead to advanced decision making capabilities assisting diagnosis by medical professionals. |
| Starting Page | 1 |
| Ending Page | 8 |
| Page Count | 8 |
| File Format | |
| ISBN | 9781450319737 |
| DOI | 10.1145/2504335.2504370 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2013-05-29 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Eeg signals Time series Assistive environments Similarity search |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|