Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Yang, Kuiyuan Fu, Jianlong Mei, Tao Lu, Hanqing Rui, Yong |
| Abstract | The advent of mobile devices and media cloud services has led to the unprecedented growing of personal photo collections. One of the fundamental problems in managing the increasing number of photos is automatic image tagging. Existing research has predominantly focused on tagging general Web images with a well-labelled image database, e.g., ImageNet. However, they can only achieve limited success on personal photos due to the domain gaps between personal photos and Web images. These gaps originate from the differences in semantic distribution and visual appearance. To deal with these challenges, in this paper, we present a novel transfer deep learning approach to tag personal photos. Specifically, to solve the semantic distribution gap, we have designed an ontology consisting of a hierarchical vocabulary tailored for personal photos. This ontology is mined from \$10,000\$ active users in Flickr with 20 million photos and 2.7 million unique tags. To deal with the visual appearance gap, we discover the intermediate image representations and ontology priors by deep learning with bottom-up and top-down transfers across two domains, where Web images are the source domain and personal photos are the target. Moreover, we present two modes (single and batch-modes) in tagging and find that the batch-mode is highly effective to tag photo collections. We conducted personal photo tagging on 7,000 real personal photos and personal photo search on the MIT-Adobe FiveK photo dataset. The proposed tagging approach is able to achieve a performance gain of \$12.8\%\$ and \$4.5\%\$ in terms of NDCG@5, against the state-of-the-art hand-crafted feature-based and deep learning-based methods, respectively. |
| Starting Page | 344 |
| Ending Page | 354 |
| Page Count | 11 |
| File Format | |
| ISBN | 9781450334693 |
| DOI | 10.1145/2736277.2741112 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2015-05-18 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Deep learning Personal photo Ontology Transfer learning Image tagging |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|