Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Kawarabayashi, Ken-ichi Reed, Bruce |
| Abstract | We consider the following problem, which is called the odd cycle packing problem. Input: A graph \$G\$ with n vertices and m edges, and an integer k. Output: k vertex disjoint odd cycles. We also consider the edge disjoint case, and the node- and arc-disjoint directed case. This problem is known to be NP-hard, even for planar graphs, if k is part of input. In this paper, we first present the integrality gap and hardness results for these problems. We prove that the integrality gap of the standard LP-relaxation of the odd cycle packing problem is Θ (√n). This result is obtained by giving an algorithm to compute an odd cycle packing, which gives rise to an O(√n) approximating algorithm for the fractional odd cycle packing problem (this gives rise to an upper bound), and by showing that there is a graph G such that there is an O(√n) half-integral odd cycle packing in G, but there are no two disjoint odd cycle in G (this gives rise to a lower bound). For the hardness result, we prove that for any ε, the node-disjoint directed odd cycle packing problem is NP-hard to approximate within $m^{1/2-ε},$ where m is the number of arcs of a given digraph G. This is true not only for the node-disjoint directed odd cycle packing problem but also for the arc-disjoint directed odd cycle packing problem. In addition, we prove that there is an $O(m^{1/2})-approximation$ algorithm for the node- and arc- directed odd cycle packing problems. Thus this approximation algorithm almost matches the hardness result. For the positive side, we consider the case when the number of odd cycles, k, is fixed. This is a natural direction, for example, the seminal result of Robertson and Seymour for the disjoint paths problem in the graph minors project. We present an O(m α(m,n) n) algorithm for any fixed k, where the function α(m,n) is the inverse of the Ackermann function (see by Tarjan [72]). This is the first polynomial time algorithm for this problem (and in fact, it is the first fixed parameter tractable algorithm). This proves a conjecture by Lovasz and Schrijver in early 1980's, who gave a polynomial time algorithm for the case k=2. Our algorithm can be applied to decide whether or not G has k edge disjoint odd cycle with the same time complexity for any fixed k. We also show that our algorithm gives rise to the Graph Minor Algorithm for the k vertex-disjoint paths problem by Robertson and Seymour for any fixed k. Thus our algorithm is beyond the framework of the Graph Minor Theory. Our algorithm has several appealing features: We use the odd S-path theorem, which is a generalization of the well-known S-paths theorem by Mader. We also introduce an odd clique minor, which can be viewed as a clique minor with some parity condition. As with the Robertson-Seymour algorithm to solve the k disjoint paths problem for any fixed k, in each iteration, we would like to either use a huge clique minor as a "crossbar", or exploit the structure of graphs in which we cannot find such a minor. Here, however, we must maintain the parity of the cycles and can only use an "odd clique minor". We must also describe the structure of those graphs in which we cannot find such a minor and discuss how to exploit it. This part needs the seminal result of Robertson and Seymour for the graph minor decomposition theorem for H-minor-free graphs. We also use some deep results of Robertson and Seymour that are needed to prove the correctness of their algorithm for the disjoint paths problem. |
| Starting Page | 695 |
| Ending Page | 704 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450300506 |
| DOI | 10.1145/1806689.1806785 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2010-06-05 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Packing Odd cycle |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|