Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | ACM Digital Library |
---|---|
Author | Singh, Rahul Guo, Xueying Niu, Zhisheng Kumar, P.R. |
Abstract | In cyber-physical systems such as automobiles, measurement data from sensor nodes should be delivered to other consumer nodes such as actuators in a regular fashion. But, in practical systems over unreliable media such as wireless, it is a significant challenge to guarantee small enough inter-delivery times for different clients with heterogeneous channel conditions and inter-delivery requirements. In this paper, we design scheduling policies aiming at satisfying the inter-delivery requirements of such clients. We formulate the problem as a risk-sensitive Markov Decision Process (MDP). Although the resulting problem involves an infinite state space, we first prove that there is an equivalent MDP involving only a finite number of states. Then we prove the existence of a stationary optimal policy and establish an algorithm to compute it in a finite number of steps. However, the bane of this and many similar problems is the resulting complexity, and, in an attempt to make fundamental progress, we further propose a new high reliability asymptotic approach. In essence, this approach considers the scenario when the channel failure probabilities for different clients are of the same order, and asymptotically approach zero. We thus proceed to determine the asymptotically optimal policy: in a two-client scenario, we show that the asymptotically optimal policy is a "modified least time-to-go" policy, which is intuitively appealing and easily implementable; in the general multi-client scenario, we are led to an SN policy, and we develop an algorithm of low computational complexity to obtain it. Simulation results show that the resulting policies perform well even in the pre-asymptotic regime with moderate failure probabilities. |
Starting Page | 197 |
Ending Page | 206 |
Page Count | 10 |
File Format | PDF EPUB |
ISBN | 9781450334891 |
DOI | 10.1145/2746285.2746305 |
Language | English |
Publisher | Association for Computing Machinery (ACM) |
Publisher Date | 2015-06-22 |
Publisher Place | New York |
Access Restriction | Subscribed |
Subject Keyword | Wireless sensor networks Scheduling Packet inter-delivery time High reliability asymptotic approach |
Content Type | Text |
Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|