Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Moura, Francisco Baquero, Carlos |
| Abstract | The majority of current mobile computing systems operate either in conjunction with a central network by some form of weak connectivity or tend to operate in total isolation and perform sporadic synchronization with a backup or a central network. These configurations miss an additional and very useful pattern of operation --- mobile to mobile interaction. Recent mobile devices have the capacity for direct communication among them, but this option is essentially neglected by the application software.In order to address this pattern of operation we believe that there is a need to support re-usable peer-to-peer synchronization mechanisms that both respects data ownership and enables some level of state reconciliation.Naming this operation pattern as autonomous operation, we can observe that this pattern is already found on many legacy applications deployed in distributed systems. For example, personal information managers, Mail/News readers and Web browsers, often store persistent state in local files, but tacitly assume a single copy. Noticing that these separate copies are in fact replicas of a distributed entity, leads to the creation of semantically knowledgeable file synchronizers that strive to restore an unified state from these replicas.Evolution from static distributed systems to mobile platforms raises a demand for applications that, not only are adapted to user mobility but, take advantage of it. It is clear that despite continuous improvements on connectivity support for mobile environments, the cost and coverage limits still imply a major share of disconnected operation. When connectivity does exist it usually interposes wide area networks between communication peers, when one party is on the road, leading to lower channel quality. On the other hand, user mobility is likely to conduce to, normally unforeseen, physical proximity of the user's mobile computer with other mobile or fixed systems. This occurrence is likely to increase as the installed population of mobile devices increases.In this work we show that without imposing restrictions on availability, which is a crucial factor for personal applications, it is possible to enable some data sharing among autonomous mobile applications. This sharing would take advantage of any pairwise encounters of replica holders.To determine the level of sharing that is compatible with permanent availability, we model general purpose data types that provide the necessary reconciliation guarantees. These guarantees are obtained by placing restrictions on the allowed behavior in order to avoid the occurrence of conflicting concurrent operations that would prevent reconciliations. Among other uses, these data types should help to identify sharable segments of data on classes of applications that traditionally support no sharing at all, and identify which parts of the state can be effectively shared.In the next section we present some examples of sharable data that motivates the modeling of a more generic and higher level description. This description is presented in the third section together with a framework of convergent components. Section four builds on this framework and gives a general presentation of a Java implementation for a component hierarchy. Before presenting the conclusions we show how these tools where used to build a merger for pairs of bookmark files, giving some insight on how to combine the components to create concrete applications. |
| Starting Page | 90 |
| Ending Page | 96 |
| Page Count | 7 |
| File Format | |
| ISSN | 01635980 |
| DOI | 10.1145/334598.334614 |
| Journal | ACM SIGOPS Operating Systems Review (OPSR) |
| Volume Number | 33 |
| Issue Number | 4 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 1975-04-01 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Conflict resolution Replication Mobile computing |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Networks and Communications Hardware and Architecture Information Systems |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|