Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Verbrugge, Clark Prokopski, Gregory B. |
| Abstract | Many popular programming languages use interpreter-based execution for portability, supporting dynamic or reflective properties, and ease of implementation. Code-copying is an optimization technique for interpreters that reduces the performance gap between interpretation and JIT compilation, offering significant speedups over direct-threading interpretation. Due to varying language features and virtual machine design, however, not all languages benefit from codecopying to the same extent. We consider here properties of interpreted languages, and in particular bytecode and virtual machine construction that enhance or reduce the impact of code-copying. We implemented code-copying and compared performance with the original direct-threading virtual machines for three languages, Java (SableVM), OCaml, and Ruby (Yarv), examining performance on three different architectures, ia32 (Pentium 4), x86_64 (AMD64) and PowerPC (G5). Best speedups are achieved on ia32 by OCaml (maximum 4.88 times, 2.81 times on average), where a small and simple bytecode design facilitates improvements to branch prediction brought by code-copying. Yarv only slightly improves over direct-threading; large working sizes of bytecodes, and a relatively small fraction of time spent in the actual interpreter loop both limit the application of codecopying and its overall net effect. We are able to show that simple ahead of time analysis of VM and execution properties can help determine the suitability of code-copying for a particular VM before an implementation of code-copying is even attempted. |
| Starting Page | 403 |
| Ending Page | 422 |
| Page Count | 20 |
| File Format | |
| ISSN | 03621340 15581160 |
| DOI | 10.1145/1449955.1449796 |
| Journal | ACM SIGPLAN Notices (SIGP) |
| Volume Number | 43 |
| Issue Number | 10 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 1983-05-01 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Dynamic analysis Compiler optimization Branch prediction Virtual machines Performance Code-copying |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Graphics and Computer-Aided Design Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|