Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Salvendy, Gavriel Hwang, Wonil |
| Abstract | Introduction Usability evaluation is essential to make sure that software products newly released are easy to use, efficient, and effective to reach goals, and satisfactory to users. For example, when a software company wants to develop and sell a new product, the company needs to evaluate usability of the new product before launching it at a market to avoid the possibility that the new product may contain usability problems, which span from cosmetic problems to severe functional problems. Three widely used methods for usability evaluation are Think Aloud (TA), Heuristic Evaluation (HE) and Cognitive Walkthrough (CW). TA method is commonly employed with a lab-based user testing, while there are variants of TA methods, including thinking out aloud at user's workplace instead of at labs. What we discuss here is the TA method that is combined with a lab-based user testing, in which test users use products while simultaneously and continuously thinking out aloud, and experimenters record users' behaviors and verbal protocols in the laboratory. HE is a usability inspection method, in which a small number of evaluators find usability problems in a user interface design by examining an interface and judging its compliance with well-known usability principles, called heuristics. CW is a theory-based method, in which evaluators evaluate every step necessary to perform a scenario-based task, and look for usability problems that would interfere with learning by exploration. These three methods have their own advantages and disadvantages. For instance, TA method provides good qualitative data from a small number of test users, but laboratory environment may influence test user's behaviors. HE is a cheap, fast and easy-to-use method, while it often finds too specific and low-priority usability problems, including even not real problems. CW helps find mismatches between users' and designers' conceptualization of a task, but it needs extensive knowledge of cognitive psychology and technical details to apply. However, even though these advantages and disadvantages show overall characteristics of three major usability evaluation methods, we cannot compare them quantitatively and see their efficiency clearly. Because one of reasons why so-called discounted methods, such as HE and CW, were developed is to save costs of usability evaluation, cost-related criteria for comparing usability evaluation are meaningful to usability practitioners as well as usability researchers. One of the most disputable issues related to cost of usability evaluation is sample size. That is, how many users or evaluators are needed to achieve a targeted usability evaluation performance, for example, 80% of overall discovery rate? The sample size of usability evaluation is known to depend on an estimate of problem discovery rate across participants. The overall discovery rate is a common quantitative measure that is used to show the effectiveness of a specific usability evaluation method in most of usability evaluation studies. It is also called overall detection rate or thoroughness measure, which is the ratio of 'the sum of unique usability problems detected by all experiment participants' against 'the number of usability problems that exist in the evaluated systems', ranging between 0 and 1. The overall discovery rates were reported more than any other criterion measure in the usability evaluation experiments and also a key component for projecting required sample size for usability evaluation study. Thus, how many test users or evaluators participate in the usability evaluation is a critical issue, considering its cost-effectiveness. |
| Starting Page | 130 |
| Ending Page | 133 |
| Page Count | 4 |
| File Format | |
| ISSN | 00010782 15577317 |
| DOI | 10.1145/1735223.1735255 |
| Journal | Communications of the ACM (CACM) |
| Volume Number | 53 |
| Issue Number | 5 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2005-08-01 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Science Computer Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|