Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Frenkel, Karen A. |
| Abstract | To illustrate the "remarkable extent to which complexity theory operates by means of analogs from computability theory," Richard Karp created this conceptual map or jigsaw puzzle. To lay out the puzzle in the plane, he used a "graph planarity algorithm." The more distantly placed parts might not at first seem related, "but in the end, the theory of NP-completeness does bring them all together," Karp says.The upper right portion of the puzzle shows concepts related to combinatorial explosions and the notion of a "good" or "efficient" algorithm. In turn, "Complexity" connects these concepts to the upper left portion, which represents the concerns of early computability theorists.The traveling salesman problem is closer to the upper right corner because it is probably intractable. It therefore borders on "NP-completeness" and "Combinatorial explosion."To some extent, however, certain divisions blur. "Linear programming," for example, has an anomalous status—the most widely used algorithms for solving such problems in practice are not good in the theoretical sense, and those that are good in the theoretical sense are often not good in practice. One example is the ellipsoid method that was the object of so much attention six years ago. It ran in polynomial time, but the polynomial was of such a high degree that the method proved good in the technical sense, but ineffective in practice. "The reason is that our notion of polynomial-time algorithms doesn't exactly capture the notion of an intuitively efficient algorithm," Karp explains. "When you get up to n5 or n6, then it's hard to justify saying that it is really efficient. So Edmonds's concept of a good algorithm isn't quite a perfect formal counterpart of good in the intuitive sense." Further, the simplex algorithm is good in every practical sense, Karp says, but not good according to the standard paradigm of complexity theory. The most recent addition to linear programming solutions, an algorithm devised by Narendra Karmarkar that some think challenges the simplex algorithm, is good in the technical sense and also appears to be quite effective in practice, says Karp.The good algorithm segment is adjacent to "Heuristics" because a heuristic algorithm may work well, but lack a theoretical pedigree. Some heuristic algorithms are always fast, but sometimes fail to give good solutions. Others always give an optimal solution, but are not guaranteed to be fast. The simplex algorithm is of the latter type."Undecidability, " "Combinatorial explosion," and "Complexity" are on the same plane because they are analogs of one another; undecidability involves unbounded search, whereas combinatorial explosions are by definition very long but not unbounded searches. Complexity theory bridges the gap because, instead of asking whether a problem can be solved at all, it poses questions about the resources needed to solve a problem.The lower left region contains the segments Karp has been concerned with most recently and that contain open-ended questions. "Randomized algorithm," for example, is situated opposite "Probabilistic analysis" because both are alternatives to worst-case analyses of deterministic algorithms. Randomized algorithms might be able to solve problems in polynomial time that deterministic ones cannot and that could mean an extension of the notion of good algorithms. Perhaps through software designs for non-von Neumann machines, algorithms can be made more efficient in practice through parallelism. Finally, some parts of the puzzle are not yet defined. Says Karp, "They correspond to the unknown territory that remains to be explored in the future." |
| Starting Page | 110 |
| Ending Page | 111 |
| Page Count | 2 |
| File Format | |
| ISSN | 00010782 15577317 |
| DOI | 10.1145/5657.214905 |
| Journal | Communications of the ACM (CACM) |
| Volume Number | 29 |
| Issue Number | 2 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2005-08-01 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Science Computer Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|