Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Avron, Haim Druinsky, Alex Gupta, Anshul |
| Copyright Year | 2015 |
| Abstract | Asynchronous methods for solving systems of linear equations have been researched since Chazan and Miranker's [1969] pioneering paper on chaotic relaxation. The underlying idea of asynchronous methods is to avoid processor idle time by allowing the processors to continue to make progress even if not all progress made by other processors has been communicated to them. Historically, the applicability of asynchronous methods for solving linear equations has been limited to certain restricted classes of matrices, such as diagonally dominant matrices. Furthermore, analysis of these methods focused on proving convergence in the limit. Comparison of the asynchronous convergence rate with its synchronous counterpart and its scaling with the number of processors have seldom been studied and are still not well understood. In this article, we propose a randomized shared-memory asynchronous method for general symmetric positive definite matrices. We rigorously analyze the convergence rate and prove that it is linear and is close to that of the method's synchronous counterpart if the processor count is not excessive relative to the size and sparsity of the matrix. We also present an algorithm for unsymmetric systems and overdetermined least-squares. Our work presents a significant improvement in the applicability of asynchronous linear solvers as well as in their convergence analysis, and suggests randomization as a key paradigm to serve as a foundation for asynchronous methods. |
| Starting Page | 1 |
| Ending Page | 27 |
| Page Count | 27 |
| File Format | |
| ISSN | 00045411 |
| e-ISSN | 1557735X |
| DOI | 10.1145/2814566 |
| Journal | Journal of the ACM (JACM) |
| Volume Number | 62 |
| Issue Number | 6 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2015-12-10 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Asynchronous Gauss-Seidel Randomized Shared-memory parallel |
| Content Type | Text |
| Resource Type | Article |
| Subject | Hardware and Architecture Information Systems Control and Systems Engineering Artificial Intelligence Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|