Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Lui, John C. S. Xu, Silei |
| Copyright Year | 2016 |
| Abstract | It is often crucial for manufacturers to decide what products to produce so that they can increase their market share in an increasingly fierce market. To decide which products to produce, manufacturers need to analyze the consumers’ requirements and how consumers make their purchase decisions so that the new products will be competitive in the market. In this paper, we first present a general distance-based product adoption model to capture consumers’ purchase behavior. Using this model, various distance metrics can be used to describe different real life purchase behavior. We then provide a learning algorithm to decide which set of distance metrics one should use when we are given some accessible historical purchase data. Based on the product adoption model, we formalize the k most marketable products (or $k-\textbf{MMP})$ selection problem and formally prove that the problem is $\textit{NP-hard}.$ To tackle this problem, we propose an efficient greedy-based approximation algorithm with a provable solution guarantee. Using submodularity analysis, we prove that our approximation algorithm can achieve at least 63% of the optimal solution. We apply our algorithm on both synthetic datasets and real-world datasets (TripAdvisor.com), and show that our algorithm can easily achieve five or more orders of speedup over the exhaustive search and achieve about 96% of the optimal solution on average. Our experiments also demonstrate the robustness of our distance metric learning method, and illustrate how one can adopt it to improve the accuracy of product selection. |
| Starting Page | 1 |
| Ending Page | 25 |
| Page Count | 25 |
| File Format | |
| ISSN | 15564681 |
| e-ISSN | 1556472X |
| DOI | 10.1145/2753764 |
| Volume Number | 10 |
| Issue Number | 4 |
| Journal | ACM Transactions on Knowledge Discovery from Data (TKDD) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-06-29 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Product selection Approximation algorithm Consumer behavior Model learning Submodular set function |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|