Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Liu, Yashu Ye, Jieping Wang, Jie |
| Copyright Year | 2016 |
| Abstract | Linear regression is a widely used tool in data mining and machine learning. In many applications, fitting a regression model with only linear effects may not be sufficient for predictive or explanatory purposes. One strategy that has recently received increasing attention in statistics is to include feature interactions to capture the nonlinearity in the regression model. Such model has been applied successfully in many biomedical applications. One major challenge in the use of such model is that the data dimensionality is significantly higher than the original data, resulting in the small sample size large dimension problem. Recently, weak hierarchical Lasso, a sparse interaction regression model, is proposed that produces a sparse and hierarchical structured estimator by exploiting the Lasso penalty and a set of hierarchical constraints. However, the hierarchical constraints make it a non-convex problem and the existing method finds the solution to its convex relaxation, which needs additional conditions to guarantee the hierarchical structure. In this article, we propose to directly solve the non-convex weak hierarchical Lasso by making use of the General Iterative Shrinkage and Thresholding (GIST) optimization framework, which has been shown to be efficient for solving non-convex sparse formulations. The key step in GIST is to compute a sequence of proximal operators. One of our key technical contributions is to show that the proximal operator associated with the non-convex weak hierarchical Lasso admits a closed-form solution. However, a naive approach for solving each subproblem of the proximal operator leads to a quadratic time complexity, which is not desirable for large-size problems. We have conducted extensive experiments on both synthetic and real datasets. Results show that our proposed algorithm is much more efficient and effective than its convex relaxation. To this end, we further develop an efficient algorithm for computing the subproblems with a linearithmic time complexity. In addition, we extend the technique to perform the optimization-based hierarchical testing of pairwise interactions for binary classification problems, which is essentially the proximal operator associated with weak hierarchical Lasso. Simulation studies show that the non-convex hierarchical testing framework outperforms the convex relaxation when a hierarchical structure exists between main effects and interactions. |
| Starting Page | 1 |
| Ending Page | 24 |
| Page Count | 24 |
| File Format | |
| ISSN | 15564681 |
| e-ISSN | 1556472X |
| DOI | 10.1145/2791295 |
| Volume Number | 10 |
| Issue Number | 3 |
| Journal | ACM Transactions on Knowledge Discovery from Data (TKDD) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-01-29 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Sparse learning Non-convex Proximal operator Weak hierarchical Lasso |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|