Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Upfal, Eli Riondato, Matteo |
| Copyright Year | 2014 |
| Abstract | The tasks of extracting $(top-\textit{K})$ Frequent Itemsets (FIs) and Association Rules (ARs) are fundamental primitives in data mining and database applications. Exact algorithms for these problems exist and are widely used, but their running time is hindered by the need of scanning the entire dataset, possibly multiple times. High-quality approximations of FIs and ARs are sufficient for most practical uses. Sampling techniques can be used for fast discovery of approximate solutions, but works exploring this technique did not provide satisfactory performance guarantees on the quality of the approximation due to the difficulty of bounding the probability of under- or oversampling any one of an unknown number of frequent itemsets. We circumvent this issue by applying the statistical concept of Vapnik-Chervonenkis (VC) dimension to develop a novel technique for providing tight bounds on the sample size that guarantees approximation of the $(top-\textit{K})$ FIs and ARs within user-specified parameters. The resulting sample size is linearly dependent on the VC-dimension of a range space associated with the dataset. We analyze the VC-dimension of this range space and show that it is upper bounded by an easy-to-compute characteristic quantity of the dataset, the $\textit{d-index},$ namely, the maximum integer $\textit{d}$ such that the dataset contains at least $\textit{d}$ transactions of length at least $\textit{d}$ such that no one of them is a superset of or equal to another. We show that this bound is tight for a large class of datasets. The resulting sample size is a significant improvement over previous known results. We present an extensive experimental evaluation of our technique on real and artificial datasets, demonstrating the practicality of our methods, and showing that they achieve even higher quality approximations than what is guaranteed by the analysis. |
| Starting Page | 1 |
| Ending Page | 32 |
| Page Count | 32 |
| File Format | |
| ISSN | 15564681 |
| e-ISSN | 1556472X |
| DOI | 10.1145/2629586 |
| Volume Number | 8 |
| Issue Number | 4 |
| Journal | ACM Transactions on Knowledge Discovery from Data (TKDD) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2014-08-29 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Association rules VC-dimension Data mining Frequent itemsets Sampling |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|