Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Rauber, Andreas Schindler, Alexander |
| Copyright Year | 2016 |
| Description | Author Affiliation: Austrian Institute of Technology, Vienna, Austria(Technische universitt wien (rauber, Andreas; Schindler, Alexander)) |
| Abstract | Over decades, music labels have shaped easily identifiable genres to improve recognition value and subsequently market sales of new music acts. Referring to print magazines and later to music television as important distribution channels, the visual representation thus played and still plays a significant role in music marketing. Visual stereotypes developed over decades that enable us to quickly identify referenced music only by sight without listening. Despite the richness of music-related visual information provided by music videos and album covers as well as T-shirts, advertisements, and magazines, research towards harnessing this information to advance existing or approach new problems of music retrieval or recommendation is scarce or missing. In this article, we present our research on visual music computing that aims to extract stereotypical music-related visual information from music videos. To provide comprehensive and reproducible results, we present the Music Video Dataset, a thoroughly assembled suite of datasets with dedicated evaluation tasks that are aligned to current Music Information Retrieval tasks. Based on this dataset, we provide evaluations of conventional low-level image processing and affect-related features to provide an overview of the expressiveness of fundamental visual properties such as color, illumination, and contrasts. Further, we introduce a high-level approach based on visual concept detection to facilitate visual stereotypes. This approach decomposes the semantic content of music video frames into concrete concepts such as vehicles, tools, and so on, defined in a wide visual vocabulary. Concepts are detected using convolutional neural networks and their frequency distributions as semantic descriptions for a music video. Evaluations showed that these descriptions show good performance in predicting the music genre of a video and even outperform audio-content descriptors on cross-genre thematic tags. Further, highly significant performance improvements were observed by augmenting audio-based approaches through the introduced visual approach. |
| Starting Page | 1 |
| Ending Page | 21 |
| Page Count | 21 |
| File Format | |
| ISSN | 21576904 |
| e-ISSN | 21576912 |
| DOI | 10.1145/2926719 |
| Volume Number | 8 |
| Issue Number | 2 |
| Journal | ACM Transactions on Intelligent Systems and Technology (TIST) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-10-25 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Music videos Video analysis Visual concept detection |
| Content Type | Text |
| Resource Type | Article |
| Subject | Artificial Intelligence Theoretical Computer Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|