Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Berta, Árpád Jelasity, Márk Hegedűs, István Kocsis, Levente Benczúr, András A. |
| Copyright Year | 2016 |
| Abstract | Low-rank matrix approximation is an important tool in data mining with a wide range of applications, including recommender systems, clustering, and identifying topics in documents. When the matrix to be approximated originates from a large distributed system, such as a network of mobile phones or smart meters, a challenging problem arises due to the strongly conflicting yet essential requirements of efficiency, robustness, and privacy preservation. We argue that although collecting sensitive data in a centralized fashion may be efficient, it is not an option when considering privacy and efficiency at the same time. Thus, we do not allow any sensitive data to leave the nodes of the network. The local information at each node (personal attributes, documents, media ratings, etc.) defines one row in the matrix. This means that all computations have to be performed at the edge of the network. Known parallel methods that respect the locality constraint, such as synchronized parallel gradient search or distributed iterative methods, require synchronized rounds or have inherent issues with load balancing, and thus they are not robust to failure. Our distributed stochastic gradient descent algorithm overcomes these limitations. During the execution, any sensitive information remains local, whereas the global features (e.g., the factor model of movies) converge to the correct value at all nodes. We present a theoretical derivation and a thorough experimental evaluation of our algorithm. We demonstrate that the convergence speed of our method is competitive while not relying on synchronization and being robust to extreme and realistic failure scenarios. To demonstrate the feasibility of our approach, we present trace-based simulations, real smartphone user behavior analysis, and tests over real movie recommender system data. |
| Starting Page | 1 |
| Ending Page | 24 |
| Page Count | 24 |
| File Format | |
| ISSN | 21576904 |
| e-ISSN | 21576912 |
| DOI | 10.1145/2854157 |
| Volume Number | 7 |
| Issue Number | 4 |
| Journal | ACM Transactions on Intelligent Systems and Technology (TIST) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-05-02 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Data mining Decentralized matrix factorization Decentralized recommender systems Online learning Privacy Singular value decomposition Stochastic gradient descent |
| Content Type | Text |
| Resource Type | Article |
| Subject | Artificial Intelligence Theoretical Computer Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|