Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Basu, Arindam Mooney iii, Vincent J. Singh, Anshul Ling, Keck-Voon |
| Copyright Year | 2013 |
| Abstract | Quick and accurate error-rate prediction of Probabilistic CMOS (PCMOS) circuits is crucial for their systematic design and performance evaluation. While still in the early stage of research, PCMOS has shown potential to drastically reduce energy consumption at a cost of increased errors. Recently, a methodology has been proposed which could predict the error rates of cascade structures of blocks in PCMOS. This methodology requires error rates of unique blocks to predict the error rates of multiblock cascade structures composed of these unique blocks. In this article we present a new model for characterization of probabilistic circuits/blocks and present a procedure to find and characterize unique circuits/blocks. Unlike prior approaches, our new model distinguishes distinct filtering effects per output, thereby improving prediction accuracy by an average of 95% over the prior art by Palem and coauthors. Furthermore, we show two models where our new model with three stages is 18% more accurate, on average, than our simpler two-stage model. We apply our proposed models to Ripple Carry Adders and Wallace Tree Multipliers and show that using our models, the methodology of cascade structures can predict error rates of PCMOS circuits with reasonable accuracy (within 9%) in PCMOS for uniform voltages as well as multiple voltages. Finally, our approach takes seconds of simulation time whereas using HSPICE would take days of simulation time. |
| Starting Page | 1 |
| Ending Page | 30 |
| Page Count | 30 |
| File Format | |
| ISSN | 15399087 |
| e-ISSN | 15583465 |
| DOI | 10.1145/2536747.2536761 |
| Volume Number | 13 |
| Issue Number | 1s |
| Journal | ACM Transactions on Embedded Computing Systems (TECS) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2013-12-06 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Probabilistic CMOS (PCMOS) computing Characterization Error-rate prediction Noise filtering Three-stage model |
| Content Type | Text |
| Resource Type | Article |
| Subject | Hardware and Architecture Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|