Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Azuaje, Francisco Glass, David Augusto, Juan Ponzoni, Ignacio |
| Abstract | There is a need to design computational methods to support the prediction of gene regulatory networks. Such models should offer both biologically-meaningful and computationally-accurate predictions, which in combination with other techniques may improve large-scale, integrative studies. This paper presents a new machine learning method for the prediction of putative regulatory associations from expression data, which exhibit properties never or only partially addressed by other techniques recently published. The method was tested on a Saccharomyces cerevisiae gene expression dataset. The results were statistically validated and compared with the relationships inferred by two machine learning approaches to gene regulatory network prediction. Furthermore, the resulting predictions were assessed using domain knowledge. The proposed algorithm may be able to accurately predict relevant biological associations between genes. One of the most relevant features of this new method is the prediction of adaptive regulation thresholds for the discretization of gene expression values, which is required prior to the rule association learning process. Moreover, an important advantage consists of its low computational cost to infer association rules. The proposed system may significantly support exploratory, large-scale studies of automated identification of potentially-relevant gene expression associations. |
| Starting Page | 624 |
| Ending Page | 634 |
| Page Count | 11 |
| File Format | |
| ISSN | 15455963 |
| DOI | 10.1109/tcbb.2007.1049 |
| Volume Number | 4 |
| Issue Number | 4 |
| Journal | IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2007-10-01 |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Combinatorial optimization, genetic regulatory networks, machine-learning, gene expression data, decision trees |
| Content Type | Text |
| Resource Type | Article |
| Subject | Genetics Biotechnology Applied Mathematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|