Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Gales, Mark J. F. Wang, Yongqiang Woodland, Philip C. Liu, Xunying Chen, Xie |
| Copyright Year | 2016 |
| Abstract | An important part of the language modelling problem for automatic speech recognition (ASR) systems, and many other related applications, is to appropriately model long-distance context dependencies in natural languages. Hence, statistical language models (LMs) that can model longer span history contexts, for example, recurrent neural network language models (RNNLMs), have become increasingly popular for state-of-the-art ASR systems. As RNNLMs use a vector representation of complete history contexts, they are normally used to rescore N-best lists. Motivated by their intrinsic characteristics, two efficient lattice rescoring methods for RNNLMs are proposed in this paper. The first method uses an $\textit{n}-gram$ style clustering of history contexts. The second approach directly exploits the distance measure between recurrent hidden history vectors. Both methods produced 1-best performance comparable to a 10 k-best rescoring baseline RNNLM system on two large vocabulary conversational telephone speech recognition tasks for US English and Mandarin Chinese. Consistent lattice size compression and recognition performance improvements after confusion network (CN) decoding were also obtained over the prefix tree structured N-best rescoring approach. |
| Starting Page | 1438 |
| Ending Page | 1449 |
| Page Count | 12 |
| File Format | |
| ISSN | 23299290 |
| e-ISSN | 23299304 |
| Volume Number | 24 |
| Issue Number | 8 |
| Journal | IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-08-01 |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Language model Lattice rescoring Recurrent neural network Speech recognition |
| Content Type | Text |
| Resource Type | Article |
| Subject | Instrumentation Computational Mathematics Signal Processing Electrical and Electronic Engineering Acoustics and Ultrasonics Speech and Hearing Media Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|