Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Zhang, Chenhao Wang, Dong Li, Lantian Zheng, Thomas Fang |
| Copyright Year | 2016 |
| Abstract | Short utterance speaker recognition (SUSR) is highly challenging due to the limited enrollment and/or test data. We argue that the difficulty can be largely attributed to the mismatched prior distributions of the speech data used to train the universal background model (UBM) and those for enrollment and test. This paper presents a novel solution that distributes speech signals into a multitude of acoustic subregions that are defined by speech units, and models speakers within the subregions. To avoid data sparsity, a data-driven approach is proposed to cluster speech units into speech unit classes, based on which robust subregion models can be constructed. Further more, we propose a model synthesis approach based on maximum likelihood linear regression (MLLR) to deal with no-data speech unit classes. The experiments were conducted on a publicly available database SUD12. The results demonstrated that on a text-independent speaker recognition task where the test utterances are no longer than 2 seconds and mostly shorter than 0.5 seconds, the proposed sub-region modeling offered a 21.51% relative reduction in equal error rate (EER), compared with the standard GMM-UBM baseline. In addition, with the model synthesis approach, the performance can be greatly improved in scenarios where no enrollment data are available for some speech unit classes. |
| Starting Page | 1129 |
| Ending Page | 1139 |
| Page Count | 11 |
| File Format | |
| ISSN | 23299290 |
| e-ISSN | 23299304 |
| Volume Number | 24 |
| Issue Number | 6 |
| Journal | IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-06-01 |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Model synthesis Short utterance Speaker recognition Subregion model |
| Content Type | Text |
| Resource Type | Article |
| Subject | Instrumentation Computational Mathematics Signal Processing Electrical and Electronic Engineering Acoustics and Ultrasonics Speech and Hearing Media Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|