Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Zhang, Xiao-Lei Wang, DeLiang |
| Copyright Year | 2016 |
| Abstract | Monaural speech separation is a fundamental problem in robust speech processing. Recently, deep neural network (DNN)-based speech separation methods, which predict either clean speech or an ideal time-frequency mask, have demonstrated remarkable performance improvement. However, a single DNN with a given window length does not leverage contextual information sufficiently, and the differences between the two optimization objectives are not well understood. In this paper, we propose a deep ensemble method, named multicontext networks, to address monaural speech separation. The first multicontext network averages the outputs of multiple DNNs whose inputs employ different window lengths. The second multicontext network is a stack of multiple DNNs. Each DNN in a module of the stack takes the concatenation of original acoustic features and expansion of the soft output of the lower module as its input, and predicts the ratio mask of the target speaker; the DNNs in the same module employ different contexts. We have conducted extensive experiments with three speech corpora. The results demonstrate the effectiveness of the proposed method. We have also compared the two optimization objectives systematically and found that predicting the ideal time-frequency mask is more efficient in utilizing clean training speech, while predicting clean speech is less sensitive to SNR variations. |
| Starting Page | 967 |
| Ending Page | 977 |
| Page Count | 11 |
| File Format | |
| ISSN | 23299290 |
| e-ISSN | 23299304 |
| Volume Number | 24 |
| Issue Number | 5 |
| Journal | IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-05-01 |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Deep neural networks Ensemble learning Mapping-based separation Masking-based separation Monaural speech separation Multicontext networks |
| Content Type | Text |
| Resource Type | Article |
| Subject | Instrumentation Computational Mathematics Signal Processing Electrical and Electronic Engineering Acoustics and Ultrasonics Speech and Hearing Media Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|