Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Mclaren, Mitchell Scheffer, Nicolas Ferrer, Luciana Lei, Yun |
| Copyright Year | 2016 |
| Abstract | This paper compares different approaches for using deep neural networks (DNNs) trained to predict senone posteriors for the task of spoken language recognition (SLR). These approaches have recently been found to outperform various baseline systems on different datasets, but they have not yet been compared to each other or to a common baseline. Two of these approaches use the DNNs to generate feature vectors which are then processed in different ways to predict the score of each language given a test sample. The features are extracted either from a bottleneck layer in the DNN or from the output layer. In the third approach, the standard i-vector extraction procedure is modified to use the senones as classes and the DNN to predict the zeroth order statistics. We compare these three approaches and conclude that the approach based on bottleneck features followed by i-vector modeling outperform the other two approaches. We also show that score-level fusion of some of these approaches leads to gains over using a single approach for short-duration test samples. Finally, we demonstrate that fusing systems that use DNNs trained with several languages leads to improvements in performance over the best single system, and we propose an adaptation procedure for DNNs trained with languages with less available data. Overall, we show improvements between 40% and 70% relative to a state-of-the-art Gaussian mixture model (GMM) i-vector system on test durations from 3 seconds to 120 seconds on two significantly different tasks: the NIST 2009 language recognition evaluation task and the DARPA RATS language identification task. |
| Starting Page | 105 |
| Ending Page | 116 |
| Page Count | 12 |
| File Format | |
| ISSN | 23299290 |
| e-ISSN | 23299304 |
| DOI | 10.1109/TASLP.2015.2496226 |
| Volume Number | 24 |
| Issue Number | 1 |
| Journal | IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-01-01 |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Deep neural networks (DNNs) Senones Spoken language recognition (SLR) |
| Content Type | Text |
| Resource Type | Article |
| Subject | Instrumentation Computational Mathematics Signal Processing Electrical and Electronic Engineering Acoustics and Ultrasonics Speech and Hearing Media Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|