Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Ganguly, Debasis Liu, Qun Tursun, Eziz Yang, Ya-Ting Abdukerim, Ghalip Osman, Turghun Zhou, Jun-Lin |
| Copyright Year | 2016 |
| Description | Author Affiliation: Xinjiang Branch of Chinese Academy of Science, Urumqi, China(Xinjiang technical institute of physics and chemistry, Chinese Academy of Science, Urumqi, China (Yang, Ya-Ting; Xinjiang technical institute of physics and chemistry, Chinese Academy of Science, University of Chinese Academy of Science, Institute of Mathematics and Information of Hotan Teachers College, Urumqi, China (Tursun, Eziz); Liu, Qun); Adapt centre, School of Computing, Dublin City University, Ireland (Ganguly, Debasis; Abdukerim, Ghalip); Xinjiang technical institute of physics and chemistry, Chinese Academy of Science, University of Chinese Academy of Science, Urumqi, China (Osman, Turghun; Zhou, Jun-Lin)) |
| Abstract | Morphological analysis, which includes analysis of part-of-speech (POS) tagging, stemming, and morpheme segmentation, is one of the key components in natural language processing (NLP), particularly for agglutinative languages. In this article, we investigate the morphological analysis of the Uyghur language, which is the native language of the people in the Xinjiang Uyghur autonomous region of western China. Morphological analysis of Uyghur is challenging primarily because of factors such as (1) ambiguities arising due to the likelihood of association of a multiple number of POS tags with a word stem or a multiple number of functional tags with a word suffix, (2) ambiguous morpheme boundaries, and (3) complex morphopholonogy of the language. Further, the unavailability of a manually annotated training set in the Uyghur language for the purpose of word segmentation makes Uyghur morphological analysis more difficult. In our proposed work, we address these challenges by undertaking a semisupervised approach of learning a Markov model with the help of a manually constructed dictionary of “suffix to tag” mappings in order to predict the most likely tag transitions in the Uyghur morpheme sequence. Due to the linguistic characteristics of Uyghur, we incorporate a prior belief in our model for favoring word segmentations with a lower number of morpheme units. Empirical evaluation of our proposed model shows an accuracy of about 82%. We further improve the effectiveness of the tag transition model with an active learning paradigm. In particular, we manually investigated a subset of words for which the model prediction ambiguity was within the top 20%. Manually incorporating rules to handle these erroneous cases resulted in an overall accuracy of 93.81%. |
| Starting Page | 1 |
| Ending Page | 23 |
| Page Count | 23 |
| File Format | |
| ISSN | 23754699 |
| e-ISSN | 23754702 |
| DOI | 10.1145/2968410 |
| Volume Number | 16 |
| Issue Number | 2 |
| Journal | ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-11-04 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Markov model Uyghur morphological analysis |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|