Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Zong, Chengqing Su, Keh-Yih Wang, Kun |
| Copyright Year | 2012 |
| Abstract | Among statistical approaches to Chinese word segmentation, the word-based n-gram $(\textit{generative})$ model and the character-based tagging $(\textit{discriminative})$ model are two dominant approaches in the literature. The former gives excellent performance for the $\textit{in-vocabulary}$ (IV) words; however, it handles $\textit{out-of-vocabulary}$ (OOV) words poorly. On the other hand, though the latter is more robust for OOV words, it fails to deliver satisfactory performance for IV words. These two approaches behave differently due to the unit they use (word vs. character) and the model form they adopt (generative vs. discriminative). In general, character-based approaches are more robust than word-based ones, as the vocabulary of characters is a closed set; and discriminative models are more robust than generative ones, since they can flexibly include all kinds of available information, such as future context. This article first proposes a character-based $\textit{n}-gram$ model to enhance the robustness of the generative approach. Then the proposed generative model is further integrated with the character-based discriminative model to take advantage of both approaches. Our experiments show that this integrated approach outperforms all the existing approaches reported in the literature. Afterwards, a complete and detailed error analysis is conducted. Since a significant portion of the critical errors is related to numerical/foreign strings, character-type information is then incorporated into the model to further improve its performance. Last, the proposed integrated approach is tested on cross-domain corpora, and a semi-supervised domain adaptation algorithm is proposed and shown to be effective in our experiments. |
| Starting Page | 1 |
| Ending Page | 41 |
| Page Count | 41 |
| File Format | |
| ISSN | 15300226 |
| e-ISSN | 15583430 |
| DOI | 10.1145/2184436.2184440 |
| Volume Number | 11 |
| Issue Number | 2 |
| Journal | ACM Transactions on Asian Language Information Processing (TALIP) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2012-06-01 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Chinese word segmentation Character-based approach Discriminative model Domain adaptation Generative model Model integration |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|