Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Chen, Zisheng Feng, Liming Lin, Xiong |
| Copyright Year | 2012 |
| Abstract | The simulation of a discrete sample path of a Lévy process reduces to simulating from the distribution of a Lévy increment. For a general Lévy process with exponential moments, the inverse transform method proposed in Glasserman and Liu [2010] is reliable and efficient. The values of the cumulative distribution function (cdf) are computed by inverting the characteristic function and tabulated on a uniform grid. The inverse of the cumulative distribution function is obtained by linear interpolation. In this article, we apply a Hilbert transform method for the characteristic function inversion. The Hilbert transform representation for the cdf can be discretized using a simple rule highly accurately. Most importantly, the error estimates admit explicit and computable expressions, which allow us to compute the cdf to any desired accuracy. We present an explicit bound for the estimation bias in terms of the range of the grid where probabilities are tabulated, the step size of the grid, and the approximation error for the probabilities. The bound can be computed from the characteristic function directly and allows one to determine the size and fineness of the grid and numerical parameters for evaluating the Hilbert transforms for any given bias tolerance level in one-dimensional problems. For multidimensional problems, we present a procedure for selecting the grid and the numerical parameters that is shown to converge theoretically and works well practically. The inverse transform method is attractive not only for Lévy processes that are otherwise not easy to simulate, but also for processes with special structures that could be simulated in different ways. The method is very fast and accurate when combined with quasi-Monte Carlo schemes and variance reduction techniques. The main results we derived are not limited to Lévy processes and can be applied to simulating from tabulated cumulative distribution functions in general and characteristic functions in our analytic class in particular. |
| Starting Page | 1 |
| Ending Page | 26 |
| Page Count | 26 |
| File Format | |
| ISSN | 10493301 |
| e-ISSN | 15581195 |
| DOI | 10.1145/2331140.2331142 |
| Volume Number | 22 |
| Issue Number | 3 |
| Journal | ACM Transactions on Modeling and Computer Simulation (TOMACS) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2012-08-01 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Hilbert transform Lévy process Analytic characteristic function Control variates Inverse transform method Options pricing Randomized quasi-Monte Carlo method |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Science Applications Modeling and Simulation |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|