Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Gollapalli, Sujatha Das Caragea, Cornelia Mitra, Prasenjit Giles, C. Lee |
| Copyright Year | 2015 |
| Abstract | A classifier that determines if a webpage is relevant to a specified set of topics comprises a key component for focused crawling. Can a classifier that is tuned to perform well on training datasets continue to filter out irrelevant pages in the face of changing content on the Web? We investigate this question in the context of identifying researcher homepages. We show experimentally that classifiers trained on existing datasets of academic homepages underperform on “non-homepages” present on current-day academic websites. As an alternative to obtaining labeled datasets to retrain classifiers for the new content, in this article we ask the following question: “How can we effectively use the unlabeled data readily available from academic websites to improve researcher homepage classification?” We design novel URL-based features and use them in conjunction with content-based features for representing homepages. Within the co-training framework, these sets of features can be treated as complementary views enabling us to effectively use unlabeled data and obtain remarkable improvements in homepage identification on the current-day academic websites. We also propose a novel technique for “learning a conforming pair of classifiers” that $\textit{mimics}$ co-training. Our algorithm seeks to minimize a loss (objective) function quantifying the difference in predictions from the two views afforded by co-training. We argue that this loss formulation provides insights for understanding co-training and can be used even in the absence of a validation dataset. Our next set of findings pertains to the evaluation of other state-of-the-art techniques for classifying homepages. First, we apply feature selection (FS) and feature hashing (FH) techniques independently and in conjunction with co-training to academic homepages. FS is a well-known technique for removing redundant and unnecessary features from the data representation, whereas FH is a technique that uses hash functions for efficient encoding of features. We show that FS can be effectively combined with co-training to obtain further improvements in identifying homepages. However, using hashed feature representations, a performance degradation is observed possibly due to feature collisions. Finally, we evaluate other semisupervised algorithms for homepage classification. We show that although several algorithms are effective in using information from the unlabeled instances, co-training that explicitly harnesses the feature split in the underlying instances outperforms approaches that combine content and URL features into a single view. |
| Starting Page | 1 |
| Ending Page | 32 |
| Page Count | 32 |
| File Format | |
| ISSN | 15591131 |
| e-ISSN | 1559114X |
| DOI | 10.1145/2767135 |
| Volume Number | 9 |
| Issue Number | 4 |
| Journal | ACM Transactions on the Web (TWEB) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2015-10-19 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Researcher homepage classification Co-training Conforming classifiers Unlabeled data |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Networks and Communications |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|