Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Zhang, Lu Song, Yang Giles, C. Lee |
| Copyright Year | 2011 |
| Abstract | The emergence of Web 2.0 and the consequent success of social network Web sites such as Del.icio.us and Flickr introduce us to a new concept called social bookmarking, or tagging. Tagging is the action of connecting a relevant user-defined keyword to a document, image, or video, which helps the user to better organize and share their collections of interesting stuff. With the rapid growth of Web 2.0, tagged data is becoming more and more abundant on the social network Web sites. An interesting problem is how to automate the process of making tag recommendations to users when a new resource becomes available. In this article, we address the issue of tag recommendation from a machine learning perspective. From our empirical observation of two large-scale datasets, we first argue that the user-centered approach for tag recommendation is not very effective in practice. Consequently, we propose two novel document-centered approaches that are capable of making effective and efficient tag recommendations in real scenarios. The first, graph-based, method represents the tagged data in two bipartite graphs, (document, tag) and (document, word), then finds document topics by leveraging graph partitioning algorithms. The second, prototype-based, method aims at finding the most representative documents within the data collections and advocates a sparse multiclass Gaussian process classifier for efficient document classification. For both methods, tags are ranked within each topic cluster/class by a novel ranking method. Recommendations are performed by first classifying a new document into one or more topic clusters/classes, and then selecting the most relevant tags from those clusters/classes as machine-recommended tags. Experiments on real-world data from Del.icio.us, CiteULike, and BibSonomy examine the quality of tag recommendation as well as the efficiency of our recommendation algorithms. The results suggest that our document-centered models can substantially improve the performance of tag recommendations when compared to the user-centered methods, as well as topic models LDA and SVM classifiers. |
| Starting Page | 1 |
| Ending Page | 31 |
| Page Count | 31 |
| File Format | |
| ISSN | 15591131 |
| e-ISSN | 1559114X |
| DOI | 10.1145/1921591.1921595 |
| Volume Number | 5 |
| Issue Number | 1 |
| Journal | ACM Transactions on the Web (TWEB) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2011-02-17 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Gaussian processes Tagging system Graph partitioning Mixture model Multi-label classification Prototype selection |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Networks and Communications |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|