Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Giuliano, Claudio Lavelli, Alberto Romano, Lorenza |
| Copyright Year | 2007 |
| Abstract | We present an approach for extracting relations between named entities from natural language documents. The approach is based solely on shallow linguistic processing, such as tokenization, sentence splitting, part-of-speech tagging, and lemmatization. It uses a combination of kernel functions to integrate two different information sources: (i) the whole sentence where the relation appears, and (ii) the local contexts around the interacting entities. We present the results of experiments on extracting five different types of relations from a dataset of newswire documents and show that each information source provides a useful contribution to the recognition task. Usually the combined kernel significantly increases the precision with respect to the basic kernels, sometimes at the cost of a slightly lower recall. Moreover, we performed a set of experiments to assess the influence of the accuracy of named-entity recognition on the performance of the relation-extraction algorithm. Such experiments were performed using both the correct named entities (i.e., those manually annotated in the corpus) and the noisy named entities (i.e., those produced by a machine learning-based named-entity recognizer). The results show that our approach significantly improves the previous results obtained on the same dataset. |
| Starting Page | 1 |
| Ending Page | 26 |
| Page Count | 26 |
| File Format | |
| ISSN | 15504875 |
| e-ISSN | 15504883 |
| DOI | 10.1145/1322391.1322393 |
| Volume Number | 5 |
| Issue Number | 1 |
| Journal | ACM Transactions on Speech and Language Processing (TSLP) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2007-12-12 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Information extraction Kernel methods Named-entity recognition Relation extraction |
| Content Type | Text |
| Resource Type | Article |
| Subject | 1700/1701 Computational Mathematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|