Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Roldao, Antonio Constantinides, George A. |
| Copyright Year | 2010 |
| Abstract | Recent developments in the capacity of modern Field Programmable Gate Arrays (FPGAs) have significantly expanded their applications. One such field is the acceleration of scientific computation and one type of calculation that is commonplace in scientific computation is the solution of systems of linear equations. A method that has proven in software to be very efficient and robust for finding such solutions is the Conjugate Gradient (CG) algorithm. In this article we present a widely parallel and deeply pipelined hardware CG implementation, targeted at modern FPGA architectures. This implementation is particularly suited for accelerating multiple small-to-medium-sized dense systems of linear equations and can be used as a stand-alone solver or as building block to solve higher-order systems. In this article it is shown that through parallelization it is possible to convert the computation time per iteration for an order $\textit{n}$ matrix from $Θ(n^{2})$ clock cycles on a microprocessor to $\textit{Θ}(\textit{n})$ on a FPGA. Through deep pipelining it is also possible to solve several problems in parallel and maximize both performance and efficiency. I/O requirements are shown to be scalable and convergent to a constant value with the increase of matrix order. Post place-and-route results on a readily available VirtexII-6000 demonstrate sustained performance of 5 GFlops, and results on a Virtex5-330 indicate sustained performance of 35 GFlops. A comparison with an optimized software implementation running on a high-end CPU demonstrate that this FPGA implementation represents a significant speedup of at least an order of magnitude. |
| Starting Page | 1 |
| Ending Page | 19 |
| Page Count | 19 |
| File Format | |
| ISSN | 19367406 |
| e-ISSN | 19367414 |
| DOI | 10.1145/1661438.1661439 |
| Volume Number | 3 |
| Issue Number | 1 |
| Journal | ACM Transactions on Reconfigurable Technology and Systems (TRETS) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2010-01-01 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|