Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Herlihy, Maurice |
| Copyright Year | 1991 |
| Abstract | A $\textit{wait-free}$ implementation of a concurrent data object is one that guarantees that any process can complete any operation in a finite number of steps, regardless of the execution speeds of the other processes. The problem of constructing a wait-free implementation of one data object from another lies at the heart of much recent work in concurrent algorithms, concurrent data structures, and multiprocessor architectures. First, we introduce a simple and general technique, based on reduction to a concensus protocol, for proving statements of the form, “there is no wait-free implementation of X by Y.” We derive a hierarchy of objects such that no object at one level has a wait-free implementation in terms of objects at lower levels. In particular, we show that atomic read/write registers, which have been the focus of much recent attention, are at the bottom of the hierarchy: thay cannot be used to construct wait-free implementations of many simple and familiar data types. Moreover, classical synchronization primitives such A $\textit{wait-free}$ implementation of a concurrent data object is one that guarantees that any process can complete any operation in a finite number of steps, regardless of the execution speeds of the other processes. The problem of constructing a wait-free implementation of one data object from another lies at the heart of much recent work in concurrent algorithms, concurrent data structures, and multiprocessor architectures. First, we introduce a simple and general technique, based on reduction to a concensus protocol, for proving statements of the form, “there is no wait-free implementation of X by Y.” We derive a hierarchy of objects such that no object at one level has a wait-free implementation in terms of objects at lower levels. In particular, we show that atomic read/write registers, which have been the focus of much recent attention, are at the bottom of the hierarchy: thay cannot be used to construct wait-free implementations of many simple and familiar data types. Moreover, classical synchronization primitives such $as\textit{test&set}$ and $\textit{fetch&add},$ while more powerful than $\textit{read}$ and $\textit{write},$ are also computationally weak, as are the standard message-passing primitives. Second, nevertheless, we show that there do exist simple universal objects from which one can construct a wait-free implementation of any sequential object. and A $\textit{wait-free}$ implementation of a concurrent data object is one that guarantees that any process can complete any operation in a finite number of steps, regardless of the execution speeds of the other processes. The problem of constructing a wait-free implementation of one data object from another lies at the heart of much recent work in concurrent algorithms, concurrent data structures, and multiprocessor architectures. First, we introduce a simple and general technique, based on reduction to a concensus protocol, for proving statements of the form, “there is no wait-free implementation of X by Y.” We derive a hierarchy of objects such that no object at one level has a wait-free implementation in terms of objects at lower levels. In particular, we show that atomic read/write registers, which have been the focus of much recent attention, are at the bottom of the hierarchy: thay cannot be used to construct wait-free implementations of many simple and familiar data types. Moreover, classical synchronization primitives such $as\textit{test&set}$ and $\textit{fetch&add},$ while more powerful than $\textit{read}$ and $\textit{write},$ are also computationally weak, as are the standard message-passing primitives. Second, nevertheless, we show that there do exist simple universal objects from which one can construct a wait-free implementation of any sequential object. while more powerful than $\textit{read}$ and $\textit{write},$ are also computationally weak, as are the standard message-passing primitives. Second, nevertheless, we show that there do exist simple universal objects from which one can construct a wait-free implementation of any sequential object. |
| Starting Page | 124 |
| Ending Page | 149 |
| Page Count | 26 |
| File Format | |
| ISSN | 01640925 |
| e-ISSN | 15584593 |
| DOI | 10.1145/114005.102808 |
| Volume Number | 13 |
| Issue Number | 1 |
| Journal | ACM Transactions on Programming Languages and Systems (TOPLAS) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 1991-01-01 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Linearization |
| Content Type | Text |
| Resource Type | Article |
| Subject | Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|