Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Bhattacharya, Bhargab B. Ghoshal, Sarmishtha Chakrabarty, Krishnendu Poddar, Sudip |
| Copyright Year | 2016 |
| Description | Author Affiliation: Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India(Duke university, Durham, NC (Chakrabarty, Krishnendu; Bhattacharya, Bhargab B.); Indian statistical institute, Kolkata, India (Poddar, Sudip; Ghoshal, Sarmishtha)) |
| Abstract | Digital (droplet-based) microfluidic technology offers an attractive platform for implementing a wide variety of biochemical laboratory protocols, such as point-of-care diagnosis, DNA analysis, target detection, and drug discovery. A digital microfluidic biochip consists of a patterned array of electrodes on which tiny fluid droplets are manipulated by electrical actuation sequences to perform various fluidic operations, for example, dispense, transport, mix, or split. However, because of the inherent uncertainty of fluidic operations, the outcome of biochemical experiments performed on-chip can be erroneous even if the chip is tested a priori and deemed to be defect-free. In this article, we address an important error recoverability problem in the context of sample preparation. We assume a cyberphysical environment, in which the physical errors, when detected online at selected checkpoints with integrated sensors, can be corrected through recovery techniques. However, almost all prior work on error recoverability used checkpointing-based $\textit{rollback}$ approach, that is, re-execution of certain portions of the protocol starting from the previous checkpoint. Unfortunately, such techniques are expensive both in terms of assay completion time and reagent cost, and can never ensure full error-recovery in deterministic sense. We consider imprecise droplet mix-split operations and present a novel $\textit{roll-forward}$ approach where the erroneous droplets, thus produced, are used in the error-recovery process, instead of being discarded or remixed. All erroneous droplets participate in the dilution process and they mutually cancel or reduce the concentration-error when the target droplet is reached. We also present a rigorous analysis that reveals the role of volumetric-error on the concentration of a sample to be prepared, and we describe the layout of a lab-on-chip that can execute the proposed cyberphysical dilution algorithm. Our analysis reveals that fluidic errors caused by unbalanced droplet splitting can be classified as being either $\textit{critical}$ or $\textit{non-critical},$ and only those of the former type require correction to achieve error-free sample dilution. Simulation experiments on various sample preparation test cases demonstrate the effectiveness of the proposed method. |
| Starting Page | 1 |
| Ending Page | 29 |
| Page Count | 29 |
| File Format | |
| ISSN | 10844309 |
| e-ISSN | 15577309 |
| DOI | 10.1145/2898999 |
| Volume Number | 22 |
| Issue Number | 1 |
| Journal | ACM Transactions on Design Automation of Electronic Systems (TODAES) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-08-10 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Algorithmic microfluidics Biochips Cyberphysical systems Error-correction Roll-forward Sample preparation |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Graphics and Computer-Aided Design Computer Science Applications Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|