Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Claxton, Rob Eagle, Nathan Phithakkitnukoon, Santi Dantu, Ram |
| Copyright Year | 2011 |
| Abstract | Predicting future calls can be the next advanced feature of the next-generation telecommunication networks as the service providers are looking to offer new services to their customers. Call prediction can be useful to many applications such as planning daily schedules, avoiding unwanted communications (e.g. voice spam), and resource planning in call centers. Predicting calls is a very challenging task. We believe that this is an emerging area of research in ambient intelligence where the electronic devices are sensitive and responsive to people's needs and behavior. In particular, we believe that the results of this research will lead to higher productivity and quality of life. In this article, we present a Call Predictor (CP) that offers two new advanced features for the next-generation phones namely “Incoming Call Forecast” and “Intelligent Address Book.” For the Incoming Call Forecast, the CP makes the next-24-hour incoming call prediction based on recent caller's behavior and reciprocity. For the Intelligent Address Book, the CP generates a list of most likely contacts/numbers to be dialed at any given time based on the user's behavior and reciprocity. The CP consists of two major components: Probability Estimator (PE) and Trend Detector (TD). The PE computes the probability of receiving/initiating a call based on the caller/user's calling behavior and reciprocity. We show that the recent trend of the caller/user's calling pattern has higher correlation to the future pattern than the pattern derived from the entire historical data. The TD detects the recent trend of the caller/user's calling pattern and computes the adequacy of historical data in terms of reversed time (time that runs towards the past) based on a trace distance. The recent behavior detection mechanism allows CP to adapt its computation in response to the new calling behaviors. Therefore, CP is adaptive to the recent behavior. For our analysis, we use the real-life call logs of 94 mobile phone users over nine months, which were collected by the Reality Mining Project group at MIT. The performance of the CP is validated for two months based on seven months of training data. The experimental results show that the CP performs reasonably well as an incoming call predictor (Incoming Call Forecast) with false positive rate of 8%, false negative rate of 1%, and error rate of 9%, and as an outgoing call predictor (Intelligent Address Book) with the accuracy of 70% when the list has five entries. The functionality of the CP can be useful in assisting its user in carrying out everyday life activities such as scheduling daily plans by using the Incoming Call Forecast, and saving time from searching for the phone number in a typically lengthy contact book by using the Intelligent Address Book. Furthermore, we describe other useful applications of CP besides its own aforementioned features including Call Firewall and Call Reminder. |
| Starting Page | 1 |
| Ending Page | 28 |
| Page Count | 28 |
| File Format | |
| ISSN | 15564665 |
| e-ISSN | 15564703 |
| DOI | 10.1145/2019583.2019588 |
| Volume Number | 6 |
| Issue Number | 3 |
| Journal | ACM Transactions on Autonomous and Adaptive Systems (TAAS) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2011-09-29 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Prediction Behavior Call logs Call matrix Convergence time Trace distance |
| Content Type | Text |
| Resource Type | Article |
| Subject | Control and Systems Engineering Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|