Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Zhang, Zonghua Shen, Hong |
| Copyright Year | 2009 |
| Abstract | Anomaly-based intrusion detection is about the discrimination of malicious and legitimate behaviors on the basis of the characterization of system normality in terms of particular observable subjects. As the system normality is constructed solely from an observed sample of normally occurring patterns, anomaly detectors always suffer excessive false alerts. Adaptability is therefore a desirable feature that enables an anomaly detector to alleviate, if not eliminate, such annoyance. To achieve that, we either design self-learning anomaly detectors to capture the drifts of system normality or develop postprocessing mechanisms to deal with the outputs. As the former methodology is usually scenario- and application-specific, in this article, we focus on the latter one. In particular, our design starts from three key observations: (1) most of anomaly detectors are threshold based and parametric, that is, configurable by a set of parameters; (2) anomaly detectors differ in operational environment and operational capability in terms of detection coverage and blind spots; (3) an intrusive anomaly may leave traces across multiple system layers, incurring different observable events of interest. Firstly, we present a statistical framework to formally characterize and analyze the basic behaviors of anomaly detectors by examining the properties of their operational environments. The framework then serves as a theoretical basis for developing an adaptive middleware, which is called M-AID, to optimally integrate a number of observation-specific parameterizable anomaly detectors. Specifically, M-AID treats these fine-grained anomaly detectors as a whole and casts their collective behaviors in a framework which is formulated as a Multiagent Partially Observable Markov Decision Process (MPO-MDP). The generic anomaly detection models of M-AID are thus automatically inferred via a reinforcement learning algorithm which dynamically adjusts the behaviors of anomaly detectors in accordance with a reward signal that is defined and quantified by a suit of evaluation metrics. Fundamentally, the distributed and autonomous architecture enables M-AID to be scalable, dependable, and adaptable, and the reward signal allows security administrators to specify cost factors and take into account the operational context for taking rational response. Finally, a host-based prototype of M-AID is developed, along with comprehensive experimental evaluation and comparative studies. |
| Starting Page | 1 |
| Ending Page | 35 |
| Page Count | 35 |
| File Format | |
| ISSN | 15564665 |
| e-ISSN | 15564703 |
| DOI | 10.1145/1636665.1636670 |
| Volume Number | 4 |
| Issue Number | 4 |
| Journal | ACM Transactions on Autonomous and Adaptive Systems (TAAS) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2009-11-30 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Anomaly detection POMDP Intrusion detection Network security Security metrics Security policy |
| Content Type | Text |
| Resource Type | Article |
| Subject | Control and Systems Engineering Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|